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Abstract 

This paper is a comprehensive resource for individuals seeking to analyze medical 

data using statistical methods. The dataset utilized in this analysis is from the 

repository generated in our prior research projects. Beginning with an elucidating 

flowchart, the paper outlines a systematic procedure to facilitate a thorough 

comprehension of statistical techniques and the underlying data. This enables 

readers to navigate the analytical process clearly and confidently, ensuring a 

complete understanding of each step involved. 
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1. Introduction 

Statistical analysis is fundamental for evidence-based decision-making and 

problem-solving across various disciplines and applications, including business, 

healthcare, social sciences, engineering, and environmental science. It empowers 

professionals and researchers to harness data effectively, extract actionable insights, 

and optimize outcomes in diverse contexts. A thorough examination of existing 

literature demonstrates the concerted efforts of researchers to guide the conducting 

of various analyses. For instance, Simpson [1] offered valuable assistance to an 

emerging researcher by crafting a tailored data analysis plan for a quantitative study. 

It focused on condensing study data and identifying relevant statistical tests. It 

organized variables by characteristics, used descriptive statistics for summarization, 

defined them as dependent or independent, and employed inferential statistics to 

select tests based on the association among variables. Such methodological clarity 

underscores the importance of employing scientific rigor in data analysis across all 

sectors, stressed Tao, Luo, and Yan [2]. They emphasized that data analysis 

underpins informed decision-making, evidence-based policies, innovation, and 

societal advancement, cementing its indispensable role in navigating the 

complexities of the modern landscape. Furthermore, the review paper authored by 

Yan, Robert, and Li [3] delved into critical statistical design considerations within 

biomedical studies, aiming to enhance scientists' proficiency in statistical 

methodologies. It addressed key concepts such as sample size determination, data 

summarization techniques, test methodologies, and common pitfalls, aiming to 
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foster robust statistical reasoning and minimize study design and analysis errors. 

Such endeavors underscore the ongoing commitment within the scientific 

community to promote methodological rigor and enhance the quality of research 

across various domains. RW Cooksey [4] simplified descriptive statistics, aiming 

to summarize data efficiently. The work employed graphical representations or 

numerical indices to depict characteristics while exploring probability and normal 

distribution, prioritizing general trends over individual data interpretation. 

Schneider Hommel and Blettner [5] introduced uni- and multivariable regression 

models followed by illustrative examples on pre-analysis considerations and result 

interpretation. Pitfalls in linear regression analysis were thoroughly examined for 

performance and interpretation. Ali and Younas [6] discussed the purpose of 

regression analysis as description, estimation, prediction, and control. Different 

types of regression analysis were used, namely linear, logistic, and multiple 

regression, and factors affecting sample size, missing data, and the nature of the 

sample were discussed. Bzovsky, Phillips, and Guymer [7] discussed using linear 

and logistic regression to study the relationship between predictor and response 

variables for continuous and dichotomous outcomes in a clinical study on patients 

receiving anti-vascular endothelial growth factor therapy. It stated that these models 

helped to understand risk factors associated with the disease. Alexopoulos [8] 

focused on linear regression involving one or more independent variables that 

predict the quantitative dependent variable. Later, the models were tested for 

accuracy using ANOVA, and the violations of assumptions in the model were 

checked. Bryan and Stanton [9] focused on using multiple linear regression instead 

of conducting a series of simple regressions and tested for the underlying 

assumptions, correlations among predictors, influential observations, and 

exploration of model structures. Hao and Hailong [10] focused on establishing a 

mathematical model and predicting the results based on the existing factor data. It 

explained the factor analysis method in prediction, where the correlation is 

calculated for relevant variables. Then, they studied the causation to see if there was 

any other casualty and calculated the regression equations. The paper by Huei and 

Liang [11] discussed the average velocity of blood in each arterial segment for 

healthy and diseased conditions using statistical analysis, namely Karl Pearson's 

correlation, linear regression, and Wilcoxon signed-rank test. Noora [12] focused 

on detecting multicollinearities, such as correlation coefficients, Variance Inflation 

Factor, and eigenvalue methods, and advanced regression techniques, such as 

principle component regression, weighted regression, and ridge regression, were 

adopted. Jamal [13] discussed the impact of multicollinearity and its existence on 

predictor variables in hypothesis testing. The paper recommended ignoring and 

dismissing the models with high correlation as it is difficult to interpret the results. 

The study by Vatcheva et al. [14] demonstrated the effect of different degrees of 

multicollinearity among predictors using pairwise Pearson product-moment 

correlation coefficients on two outcome variables, namely systolic and diastolic 

blood pressure, in linear regression analysis for generated simulated datasets. In the 

work by Breusch and Pagan they developed a model for heteroscedasticity 

disturbances for linear regression model using Lagrangian multiplier test[15]. The 

paper by Osborne et al. [16] discusses the assumptions of multiple regression that 
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are robust to the violation, such as linearity, measurement reliability, 

heteroscedasticity, and normality. Hickey et al. [17] outlined some multivariate 

linear regression model-checking diagnostic techniques, such as heteroscedasticity 

and autocorrelation. Nayak and Tantravahi [18] explored key feature variables 

employing regularized linear regression, ensemble methods, and boosting 

algorithms tailored for correlated features in medical datasets. Subsequently, these 

methods underwent testing utilizing the quantile loss function to ascertain the 

optimal regression model for prediction, followed by the computation of quantile 

intervals. Ogutu, Schulz, and Piepho [19] focused on identifying approaches, 

namely ridge, lasso, and elastic net regression, to efficiently and accurately predict 

breeding values in genomic selection and then evaluate them for prediction. The 

model introduced by Tibshirani [20], the 'lasso,' minimizes the residual sum of 

squares with coefficients constrained by a constant. Their results showed that it 

yields exact 0 coefficients, creating interpretable models with favorable properties 

of subset selection and ridge regression. The widely used Lasso regularization is 

showcased on a real-life dataset of adults with autism in R software by Finch and 

Finch [21]. Findings on executive functioning and intelligence test correlations 

were discussed. The work by Hui and Trevor [22] explained the elastic net for the 

sparse model while accommodating the correlation effect. It explained the 

importance of penalties for increasing the accuracy of the model.  

Continuing efforts to elucidate the process of conducting statistical analysis address 

a critical necessity within the research community. Such endeavors are pivotal in 

advancing scientific inquiry by offering guidance, enhancing methodological clarity, 

promoting reproducibility,  and facilitating knowledge dissemination and skill 

development. This paper is a comprehensive guide for individuals interested in 

analyzing medical data using statistical methods. Leveraging a dataset from prior 

research, we presented a structured approach via a detailed flowchart accompanied 

by a systematic procedure that elucidates statistical techniques and data 

comprehension. This framework empowers readers to navigate the analytical 

process with confidence and thoroughness. The paper is organized as follows: 

Section 2 delves into the data utilized in the study, followed by a detailed exposition 

of the methodology in Section 3, followed by results and discussions in Section 4, 

and concluding remarks in Section 5. 

 

2. Data Description 

The dataset was generated from our earlier studies, where we utilized a 

Computational Fluid Dynamics (CFD) prototype based on sonography images of 

the human femoral artery. This model was simulated in the COMSOL multi-physics 

software under various anatomical and physiological blood flow conditions within 

the artery to generate a diverse dataset representing different blood flow scenarios. 

We incorporated the time-independent continuity and momentum equations for 

incompressible fluid flows, employing the laminar flow interface. For the numerical 

solution of the velocity and pressure fields, we used P1-P1 linear finite element 

discretization, dividing the computational domain into small finite elements and 
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approximating velocity and pressure within each element using linear functions. 

Given the importance of tolerance in determining the efficiency of a numerical 

method, we set the relative tolerance to 10⁻³ to define the acceptable error relative 

to the magnitude of the solution. In the next step, we identified appropriate fluid 

(blood) models for femoral arterial components, namely the CFA (Common 

Femoral Artery), SFA (Superficial Femoral Artery), and the DFA (Deep Femoral 

Artery). [18].  

The dataset comprised the following predictor and response variables. 

Predictors 

Den_CFA: Blood Density in the common femoral artery (CFA) (Kg/m3) 

Vis_CFA: Blood viscosity in the CFA (Pa.s) 

Den_SFA: Blood Density in the superficial femoral artery (SFA) (Kg/m3) 

Vis_SFA: Blood viscosity in the SFA (Pa.s) 

YS1: Blood Yield stress in the Deep femoral artery (DFA) (N/m2) 

Mp1: Blood model parameter in DFA (s) 

INVEL: Blood velocity at the CFA entrance (m/s) 

 

Response Variables 

Vel_SFA: Average blood velocity in SFA (m/s) 

Vel_DFA: Average blood velocity in DFA (m/s) 

Pre_CFA: Average blood pressure in CFA (Pa) 

Pre_SFA: Average blood pressure in SFA (Pa) 

Pre_DFA: Average blood pressure in DFA (Pa)  

WSS_CFA: Wall shear stress in CFA (Pa) 

WSS_SFA: Wall shear stress in SFA (Pa) 

WSS_DFA: Wall shear stress in DFA (Pa) 

 

This study analyzes the dataset to derive insights pursued through the following 

objectives. 

 

Objectives 

➢ Utilize linear models for evaluating significant model parameters. 

➢ Investigate the predictive accuracy of linear models. 

➢ Assess the coherence between predictions and clinical data. 
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3. Methodology 

The data analysis procedure follows a sequential approach outlined in Figure (1). 

Initially, the dataset was imported into the Python workspace, and univariate 

analysis was conducted to examine the distribution of the response variable, 

utilizing descriptive statistics such as mean, standard deviation, skewness, and 

kurtosis. Subsequently, scatter plots and Karl Pearson's correlation coefficient were 

employed to identify significant predictor variables for each response variable. 

These findings informed the appropriateness of a multiple linear regression model, 

with subsequent confirmation of multicollinearity among predictor variables. It is 

to be noted that the model-building process is complete if significant (predictor) 

variables are uncorrelated; otherwise, regularized linear models are to be developed 

to address collinearity issues. 

 

Figure 1. Work Flow Diagram 

Figure (2) displays the comprehensive flowchart detailing the workflow 

implementation. The process begins with importing the dataset into the Python 

workspace and generating descriptive statistics for the response variables to assess 

their distribution. Subsequently, simple linear regression models are constructed to 

identify and eliminate insignificant predictor variables for each response variable. 

Upon discovering multiple significant predictor variables affecting the response 

variable, the analysis progresses to building multiple regression models. While 

individual variables were found to affect the response variable in the previous step, 

evaluating a group of predictor variables' significance involves computing R2, t, and 

F statistics. This step helps eliminate insignificant predictors, selecting the best 

model with the most appropriate predictor variables. 

Following this, the validity of the multilinear models is to be assessed in terms of 

the factors, residual randomness, autocorrelation, and heteroscedasticity. The 

results indicated the necessity of constructing regularized linear regression models, 

which were addressed in the subsequent stage. Finally, the best model is identified 
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based on performance metrics, and the statistical model for each response variable 

is built.   

 

Figure 2. Flow chart of statistical analysis 

 

4. Results and Discussions 

In this section, the outcomes of the statistical examinations, as delineated in the 

flowchart (Figure 2), are presented alongside the resulting discussions. 

 

Univariate Analysis 

Step 1: Data summarization and presentation 

Descriptive statistics serve to describe and summarize data, employing graphical 

representations for clarity. Mean and standard deviation values are utilized for data 

summarization. Table (1) presents the descriptive statistics computed for the 

response variables. 
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Table 1. Representation of descriptive statistics for response variables 

Variable Count Mean Std Min 25% 50% 75% Max CV Skew Kurtosis 

Vel_SFA 2187 0.13 0.01 0.12 0.12 0.13 0.15 0.15 9% 0.0231 -1.37 

Vel_DFA 2187 0.11 0.01 0.09 0.10 0.11 0.12 0.12 11% 0.0089 -1.48 

Pre_CFA 2187 8287.53 1.17 8285.47 8286.52 8287.54 8288.51 8289.66 0% 0.0026 -1.17 

Pre_SFA 2187 8484.89 1.89 8482.09 8482.88 8484.90 8486.90 8487.76 0% 0.0006 -1.42 

Pre_DFA 2187 8488.15 0.18 8487.85 8487.98 8488.16 8188.29 8488.48 0% 0.0122 -1.23 

WSS_CFA 2187 0.41 0.06 0.32 0.36 0.41 0.46 0.51 14% 0.1987 -0.75 

WSS_SFA 2187 0.75 0.10 0.60 0.68 0.75 0.81 0.923 13% 0.1232 -1.10 

WSS_DFA 2187 0.89 0.10 0.76 0.77 0.89 0.01 0.03 11% 0.0214 -1.49 

Observations 

➢ Table (1) shows that the average blood velocity is higher in SFA than in the DFA 

segment.  

➢ The pressure is higher in DFA compared to CFA and SFA.  

➢ The wall shear stress is greater in DFA than in SFA and CFA. 

➢ The velocity variation is more significant in the DFA than in the SFA; similarly, 

the variation in wall shear stress is higher in CFA, followed by SFA and DFA. There 

is almost zero variation for pressures in all three components. 

➢ From the skewness and kurtosis, it is evident that more observations are 

concentrated near the average value than on the tails and the extreme values are 

present towards the right side of the distribution.   

➢ The data also indicates the absence of outliers.   

 

Bivariate Analysis 

Step 2: Analysis of a simple linear relationship between variables 

Given the quantitative nature of the observations, we conducted simple correlations 

using Karl Pearson's method, subsequently evaluating their significance, as 

represented in Table (2). 

Table 2. Representation of correlation and its significance. 

Response 

Variable 

Explanatory 

variable 

Correlation 

value 

Extent and direction 

of correlation 
p-value 

Significance 

(Y/N) 

Vel_SFA 

Den_CFA 0.0039 
Low degree positive 

correlation 
0.8525 N 

Vis_CFA -0.0328 
Low degree negative 

correlation 
0.1252 N 

Den_SFA -0.0021 
Low degree negative 

correlation 
0.9235 N 

Vis_SFA -0.2095 
Low degree negative 

correlation 
0.0 Y 

YS1 0.0171 
Low degree positive 

correlation 
0.4233 N 

Mp1 -0.0 
Low degree negative 

correlation 
0.9999 N 
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Invel 0.9769 
High degree positive 

correlation 
0.0 Y 

Vel_DFA 

Den_CFA 0.0013 
Low degree positive 

correlation 
0.9498 N 

Vis_CFA -0.0206 
Low degree negative 

correlation 
0.3359 N 

Den_SFA 0.0017 
Low degree positive 

correlation 
0.9367 N 

Vis_SFA 0.0819 
Low degree positive 

correlation 
0.0001 Y 

YS1 -0.0197 
Low degree negative 

correlation 
0.3561 N 

Mp1 -0.0 
Low degree negative 

correlation 
0.9999 N 

Invel 0.9962 
High degree positive 

correlation 
0.0 Y 

Pre_CFA 

Den_CFA 0.9354 
High degree positive 

correlation 
0.0 Y 

Vis_CFA 0.0705 
Low degree positive 

correlation 
0.0009 Y 

Den_SFA 0.0024 
Low degree positive 

correlation 
0.9099 N 

Vis_SFA 0.111 
Low degree positive 

correlation 
0.0 Y 

YS1 0.018 
Low degree positive 

correlation 
0.399 N 

Mp1 0.0 
Low degree positive 

correlation 
0.9999 N 

Invel 0.3273 
Low degree positive 

correlation 
0.0 Y 

Pre_SFA 

Den_CFA 0.0029 
Low degree positive 

correlation 
0.8937 N 

Vis_CFA 0.0161 
Low degree positive 

correlation 
0.4529 N 

Den_SFA 0.9851 
High degree positive 

correlation 
0.0 Y 

Vis_SFA 0.0555 
Low degree positive 

correlation 
0.0094 Y 

YS1 0.0057 
Low degree positive 

correlation 
0.7892 N 

Mp1 -0.0 
Low degree negative 

correlation 
0.9999 N 

Invel 0.1619 
Low degree positive 

correlation 
0.0 Y 

Pre_DFA 

Den_CFA -0.0067 
Low degree negative 

correlation 
0.7536 N 

Vis_CFA 0.0989 
Low degree positive 

correlation 
0.0 Y 

Den_SFA 0.0056 
Low degree positive 

correlation 
0.7925 N 

Vis_SFA 0.2707 
Low degree positive 

correlation 
0.0 Y 

YS1 0.1045 
Low degree positive 

correlation 
0.0 Y 
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Mp1 0.0 
Low degree positive 

correlation 
0.9999 N 

Invel 0.9502 
High degree positive 

correlation 
0.0 Y 

WSS_CFA 

Den_CFA 0.0037 
Low degree positive 

correlation 
0.8631 N 

Vis_CFA 0.6461 
Moderate degree 

positive correlation 
0.0 Y 

Den_SFA 0.0005 
Low degree positive 

correlation 
0.9821 N 

Vis_SFA 0.0243 
Low degree positive 

correlation 
0.2556 N 

YS1 -0.0033 
Low degree negative 

correlation 
0.878 N 

Mp1 0.0 
Low degree positive 

correlation 
0.9999 N 

Invel 0.7599 
High degree positive 

correlation 
0.0 Y 

WSS_SFA 

Den_CFA 0.0086 
Low degree positive 

correlation 
0.6859 N 

Vis_CFA -0.0051 
Low degree negative 

correlation 
0.8122 N 

Den_SFA 0.0018 
Low degree positive 

correlation 
0.9312 N 

Vis_SFA 0.3875 
Low degree positive 

correlation 
0.0 Y 

YS1 0.0099 
Low degree positive 

correlation 
0.6409 N 

Mp1 -0.0 
Low degree negative 

correlation 
0.9999 N 

Invel 0.9204 
High degree positive 

correlation 
0.0 Y 

WSS_DFA 

Den_CFA 0.0057 
Low degree positive 

correlation 
0.7911 N 

Vis_CFA -0.021 
Low degree negative 

correlation 
0.3259 N 

Den_SFA 0.0002 
Low degree positive 

correlation 
0.9914 N 

Vis_SFA 0.0188 
Low degree positive 

correlation 
0.3804 N 

YS1 0.0454 
Low degree positive 

correlation 
0.0339 Y 

Mp1 0.0 
Low degree positive 

correlation 
0.9999 N 

Invel 0.9985 
High degree positive 

correlation 
0.0 Y 

Observations 

➢ Table (2) shows that all the response variables depend on inlet velocity. 

However, the pressures in CFA and SFA are not highly correlated with the 

inlet velocity. 

➢ Almost all the response variables depend on the blood viscosity in SFA 

except for the wall shear stress in CFA and DFA. 
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➢ Pressure and wall shear stress in DFA are dependent on the yield stress. 

➢ Pressures are dependent on the blood density except for the pressure in DFA. 

The significant predictor variables obtained in step (2) are used to construct 

multiple linear regression discussed in step (3). 

 

Multivariate Analysis 

Step 3: Multiple Linear Regression Analysis 

The statistical evaluation of medical data aims to reveal the relationships between 

multiple variables, typically accomplished through regression analysis. It is known 

that Regression analysis is a widely used statistical technique that investigates and 

models the interrelation between variables. These variables are categorized into two 

types based on their role in the study: independent (or predictor), used to estimate 

the nature of other variables, and dependent (or response), derived from known 

information. 

Regression analysis is typically employed when the response variable is continuous. 

Its primary objective is to ascertain and estimate the parameters of a model that best 

fits a given dataset. This is achieved through the principle of least squares, where 

the sum of squares of errors for a sample is minimized. Predictor variables are 

determined likewise, adhering to this principle. For regression analysis to yield 

reliable results, certain assumptions must be met by the dataset: 

➢ Dependent and independent variables exhibit a linear relationship. 

➢ There should be minimal correlation among independent variables. 

➢ The observations for the explained variable are drawn from a normal and 

independent population. 

➢ Residuals, representing the difference between observed and predicted values, 

adhere to a normal distribution with a mean of zero and constant variance. 

We conducted multiple linear regression for each response variable using the 

Ordinary Least Squares (OLS) method, incorporating significant regressor 

variables identified in Table (2). Subsequently, the accuracy of the model was 

evaluated using the F-test and coefficient of determination. The significant 

variables for each response variable are presented in Table (3), accompanied by the 

corresponding model accuracy metrics. 

Table 3. Multiple linear regression model's coefficients with constants and the evaluation metrics 

Response 

Variable 

Using Multiple Linear Regression  
R2 

Value 

Adjusted R2 

value 

F – test 

statistic 

p-value 
Explanatory 

variable 

Coefficient 

Value 

P -

value 

Vel_SFA 

Constant 0.0187 0.0 

0.998 0.998 0.000 Vis_SFA -5.385 0.0 

Invel 1.2554 0.0 

Vel_DFA 

Constant -0.0341 0.0 

0.999 0.999 0.000 Vis_SFA 2.4341 0.0 

Invel 1.4812 0.0 

Pre_CFA Constant 7998.79 0.0 0.999 0.999 0.000 
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Den_CFA 0.2677 0.0 

Vis_CFA 201.7766 0.0 

Vis_SFA 317.8147 0.0 

Invel 46.8337 0.0 

Pre_SFA 

Constant 7999.50 0.0 

1.000 1.000 0.000 
Den_SFA 0.4559 0.0 

Vis_SFA 256.9304 0.0 

Invel 37.4557 0.0 

Pre_DFA 

Constant 8485.46 0.0 

0.997 0.997 0.000 

Vis_CFA 42.8188 0.0 

Vis_SFA 117.2284 0.0 

YS1 45.2629 0.0 

Invel 20.5721 0.0 

WSS_CFA 

Constant -0.4175 0.0 

0.995 0.995 0.000 Vis_CFA 89.0494 0.0 

Invel 5.2357 0.0 

WSS_SFA 

Constant -0.6424 0.0 

0.997 0.997 0.000 Vis_SFA 95.0873 0.0 

Invel 11.2935 0.0 

WSS_DFA 

Constant -0.2866 0.0 

0.999 0.999 0.000 YS1 11.4085 0.0 

Invel 12.5530 0.0 

Observations 

➢ The significant regressor variables obtained using simple correlation are found 

to be significant parameters for multiple linear regression. 

➢ To describe the influence of predictor factors on response variables, R2 and 

modified R2 values are employed. It was found that the significant predictor 

variables could provide more than 99% of the predictions for all the response 

variables.  

➢ Using the F-test statistic, the model's significance for estimations is determined, 

and the model is significant for the predictor variables listed in Table (3). 

 

Step 4: Analysing residuals 

Next, we computed the residuals and analyzed them to assess the model's accuracy 

by predicting the response values. A plot depicting the relationship between the 

response variable and its prediction is employed to verify linearity. Subsequently, 

the Durbin-Watson test and Karl Pearson's correlation coefficient are utilized to 

evaluate autocorrelation among the predictor variables. It is known that the Durbin-

Watson test aids in determining the nature of autocorrelation, while Karl Pearson's 

method identifies correlated variables. Anderson-Darling test is employed to assess 

the normality of residuals. The reason for using the Anderson-Darling test is that it 

is a modified version of the Kolmogorov-Smirnov test, placing more emphasis on 

the tails where the null and alternative hypotheses are given by 

H0: Residuals adhere to a normal distribution. 

H1: Residuals deviate from a normal distribution. 
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Furthermore, the Breusch Pagan test, is employed to examine constant variance, or 

homoscedasticity, in residuals for which the null and alternative hypotheses are 

H0: Residuals exhibit constant variance. 

H1: Residuals display non-constant variance. 

The results of these tests are presented in Table (4). 

 

 

Table 4. Performance measure of multiple linear regression model. 

Response 

Variable 

Linearity 

Test 
Normality Test Test for autocorrelation Test for Homoskedasticity 

  
P – 

value 
Inference 

Statistic 

value 

Type of 

autocorrelation 
P value inference 

Vel_SFA Linear 0.000 Not normal 2.4742 
Little or no 

autocorrelation 
0.000 Heteroscedasticity 

Vel_DFA Linear 0.000 Not normal 0.2672 
Positive 

autocorrelation 
0.000 Heteroscedasticity 

Pre_CFA Linear 0.000 Not normal 1.2606 
Positive 

autocorrelation 
0.309 Homoscedasticity 

Pre_SFA Linear 0.000 Not normal 0.4206 
Positive 

autocorrelation 
0.000 Heteroscedasticity 

Pre_DFA Linear 0.000 Not normal 2.7944 
Negative 

autocorrelation 
0.004 Heteroscedasticity 

WSS_CFA Linear 0.000 Not normal 2.6226 
Negative 

autocorrelation 
0.435 Homoscedasticity 

WSS_SFA Linear 0.000 Not normal 2.5666 
Negative 

autocorrelation 
0.005 Heteroscedasticity 

WSS_DFA Linear 0.000 Not normal 0.4138 
Positive 

autocorrelation 
0.068 Homoscedasticity 

Observations 

➢ From Table (4), it is noted that all the response variables are linear. 

➢ From the normality test, it is evident that all the response variables do not follow 

the normal distribution. 

➢ Autocorrelation exists in the data where Vel_DFA, Pre_CFA, Pre_SFA, and 

WSS_DFA exhibit positive autocorrelation while other variables exhibit 

negative autocorrelation. The response variable Vel_SFA has little or no 

autocorrelation. 

➢ Almost all the response variables exhibit heteroscedasticity except for 

Vel_DFA, WSS_CFA, and WSS_DFA, which exhibit homoscedasticity. 

To address the deviation in assumptions of linear models, we proceeded to study 

using regularized linear models, as discussed in step (5). 

 

Step 5: Regularized Linear Models 

Considering the association among regressor variables, as evident from Table (5), 

we opted for regularized linear models. These models aim to mitigate bias in linear 
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models by applying a penalty to the loss function, thus preventing overfitting. The 

analysis is conducted while considering the optimal penalty. Furthermore, 

evaluation metrics are computed for all models, enabling the selection of the best 

model to streamline the regression model. 

The significant regressor variables for estimations using the regularized linear 

models are identified in Table (5). 

Table 5. Significant parameters of regularized linear models 

Response 

Variable 

Linear model without 

regularization 

Regularized Linear Models 

Ridge Lasso Elastic Net 

Vel_SFA Vis_SFA, Invel Vis_SFA, Invel None Invel 

Vel_DFA Vis_SFA, Invel Vis_SFA, Invel None Invel 

Pre_CFA 
Den_CFA, Vis_CFA, 

Vis_SFA, Invel 

Den_CFA, Vis_CFA, 

Vis_SFA, Invel 

Den_CFA, 

Invel 

Den_CFA, 

Vis_SFA, Invel 

Pre_SFA 
Den_SFA, Vis_SFA, 

Invel 

Den_SFA, Vis_SFA, 

Invel 

Den_SFA, 

Invel 
Den_SFA, Invel 

Pre_DFA 
Vis_CFA, Vis_SFA, 

YS1, Invel 

Vis_CFA, Vis_SFA, 

YS1, Invel 
Invel Invel 

WSS_CFA Vis_CFA, Invel Vis_CFA, Invel None Invel 

WSS_SFA Vis_SFA, Invel Vis_SFA, Invel None Invel 

WSS_DFA YS1, Invel YS1, Invel None Invel 

As depicted in Table (5), the Lasso regression failed to identify significant regressor 

variables for the model, except in cases of pressures of all three components, where 

Invel, Den_CFA, and Den_SFA also proved significant. In contrast, the ridge 

regression model outperforms the elastic net model in estimating the model's 

parameters. The elastic net model oversimplifies the model by considering only the 

inlet velocity as the significant parameter. 

Table (6) illustrates the performance of these models using evaluation metrics such 

as coefficient of determination (R2), mean square error (MSE), mean absolute error 

(MAE), and root mean square error (RMSE). 

Table 6. Evaluation metrics of regularized linear models 

Response 

variable 

Regression 

Model 

Evaluation metrics 

R2 MAE MSE RMSE 

Vel_SFA 

 

Linear 0.9983 0.0004 0.0 0.0004 

Ridge 0.9746 0.014 0.0 0.0017 

Lasso 0.0 0.009 0.0001 0.0105 

Elastic Net 0.6138 0.0056 0.0 0.0065 

Vel_DFA 

Linear 0.9991 0.0003 0.0 0.0004 

Ridge 0.9955 0.0077 0.0 0.0008 

Lasso 0.0 0.0102 0.0001 0.0121 

Elastic Net 0.7380 0.0053 0.0 0.0062 

Pre_CFA 

Linear 0.9995 0.0221 0.0007 0.0268 

Ridge 0.9902 0.0962 0.0134 0.1158 

Lasso 0.9712 0.1623 0.0393 0.1983 

Elastic Net 0.9835 0.1246 0.0226 0.1501 

Pre_SFA 

Linear 0.9997 0.0295 0.0012 0.0351 

Ridge 0.9979 0.0722 0.0071 0.0845 

Lasso 0.9924 0.1351 0.0272 0.1650 
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Elastic Net 0.9966 0.0952 0.0123 0.1108 

Pre_DFA 

Linear 0.9968 0.0082 0.0001 0.0099 

Ridge 0.9463 0.0341 0.0017 0.0409 

Lasso 0.4229 0.1154 0.018 0.1343 

Elastic Net 0.9016 0.0465 0.0031 0.0554 

WSS_CFA 

Linear 0.9949 0.0032 0.0 0.004 

Ridge 0.7706 0.0222 0.0007 0.0269 

Lasso 0.0 0.0449 0.0032 0.0563 

Elastic Net 0.5655 0.0315 0.0014 0.0371 

WSS_SFA 

Linear 0.9973 0.0044 0.0 0.0052 

Ridge 0.9166 0.0239 0.0008 0.0289 

Lasso 0.0 0.0859 0.01 0.1002 

Elastic Net 0.8434 0.0335 0.0016 0.0396 

WSS_DFA 

Linear 0.9991 0.0026 0.0 0.0031 

Ridge 0.9979 0.0039 0.0 0.0047 

Lasso 0.0 0.0853 0.0105 0.1026 

Elastic Net 0.9934 0.0068 0.0001 0.0083 

Table (6) demonstrates that although Lasso regression performs satisfactorily in 

estimating pressures, it struggles to predict response variables for velocities and 

wall shear stress (WSS). Moreover, it is observed that the performance ridge 

regression outperforms the elastic net. 

Further remarks: 

The statistical analysis of velocity, pressure, and wall shear stress in the CFA, SFA, 

and DFA components underscores the significance of inlet velocity and the 

viscosity of CFA as key determinants. Notably, wall shear stress has more 

significant variability than velocities across the three arterial segments, while 

pressures remain relatively close to the average value. 

The clinical data showcases the velocity, pressure, and wall shear stress profiles 

across the three segments, as detailed in Table (7). 

Table 7. Parameters of the Clinical Data[11] 

Artery CFA SFA DFA 

Mean velocity (cm/s) 14.1±5.4 8.9±3.9 10.7±5.0 

Mean WSS (Pa) 0.35±0.18 0.49±0.15  

Mean pressure (mmHg)  70.9±6.7  

The velocity, pressure, and WSS profiles in three segments are computed and 

presented in Tables (8) and (9) from the developed statistical models. 

Table 8. Predictions of the multiple linear regression model 

Artery CFA SFA DFA 

Mean velocity (cm/s) - 11.02± 0.01 10.89±0.012 

Mean WSS (Pa) 0.41±0.06 0.75±0.10 0.89±0.10 

Mean pressure (mmHg) 62.16±1.17 63.64±1.89 63.67±0.18 

Table 9. Predictions of the ridge regression model. 

Artery CFA SFA DFA 

Mean velocity (cm/s) - 11.02±0.01 10.89±0.01 

Mean WSS (Pa) 0.41±0.04 0.75±0.09 0.89±0.1 
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Mean pressure (mmHg) 62.16±1.16 63.64±1.89 63.67±0.17 

Tables (7), (8), and (9) highlight a noticeable discrepancy between the expected 

values derived from linear models and the clinical data. While linear models proved 

significant in predicting parameters, they fall short as the best prediction models 

due to the data's non-normality, autocorrelation, and heteroskedasticity. Among the 

regularized linear models, it is observed that ridge regression outperforms Lasso 

and Elastic Net in terms of velocity and wall shear stress prediction. Also, it is seen 

that the Elastic Net regressor oversimplified the model by only considering the inlet 

velocity near CFA as the significant variable, thereby suppressing the contribution 

of other regressor variables. 

 

5. Conclusions 

This paper provides a comprehensive guide for analyzing medical data using 

statistical methods. It systematically explains each procedure, simplifying complex 

techniques for better understanding. By offering clear, step-by-step instructions, the 

paper enables readers to confidently navigate the analytical process, ensuring they 

can effectively apply statistical methods in their medical research and practice.  
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