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Abstract. Investigating the hemodynamics of human carotid arteries involves a detailed exam-

ination of blood flow dynamics within the individualized vascular structures on the left and 

right sides of the neck. This study focuses on exploring and analyzing the unique hemodynamic 

characteristics of these arteries in a subject-specific context, offering valuable insights into 

blood circulation patterns and fluid dynamics associated with these vital blood vessels. To 

achieve this, we developed Computational Fluid Dynamics (CFD) prototypes for both the left 

and right carotid arteries using MRI scans from an individual. These CFD models were simu-

lated under various physiological conditions, and the generated data were analyzed with ma-

chine and deep learning models to understand variations in flow characteristics. The findings 

revealed statistically significant differences in parameters such as wall shear stress and blood 

velocity between the two (left-sided and right-sided) arteries. Further analysis identified poten-

tial unhealthy conditions in the subject's left carotid artery. The Shapely Additive Explanations 

(SHAP) analysis gave in-depth knowledge, revealing that blood velocity in the common carotid 

artery (CCA) is the primary factor affecting blood flow in the internal (ICA) and external ca-

rotid arteries (ECA). Higher CCA velocity boosts velocities in the ICA and ECA, while lower 

CCA velocity reduces them. Additionally, blood velocity and viscosity are the main factors 

influencing wall shear stress (WSS) in each artery segment, with higher values increasing WSS 

and lower values reducing it. Other factors, like blood density and reference pressure, have 

minimal impact on blood flow and WSS. 

 

Keywords: CFD prototype, Subject Specific Artery, Numerical model, Predictive analysis, 

SHAP 

1. Introduction.  
The presence of atherosclerosis at the carotid bifurcation represents a significant risk factor for the 

occurrence of strokes. Atherosclerosis in this crucial arterial junction involves plaque buildup com-

posed of cholesterol, fatty deposits, and inflammatory cells. This accumulation can lead to the nar-

rowing or complete blockage of the carotid arteries, obstructing the normal blood flow to the brain. 

Consequently, the risk of ischemic stroke significantly increases, as the compromised blood supply 

may result in insufficient oxygen and nutrients reaching vital brain regions. Managing and addressing 

atherosclerosis at carotid bifurcation is pivotal in stroke prevention and cardiovascular health.                                                                                                                                       

A few studies on the methodologies adopted by researchers for carotid artery disease identification 

are as follows: Examining these trends and shifts in methodologies provides valuable insights into the 

progress of medical research, enabling a comprehensive overview of the tools and approaches. Abdul, 

Nitesh Kumar, and Raghuvir Pai [1] conducted a Fluid-Structure Interaction (FSI) investigation on 

two distinct three-dimensional patient-specific scenarios: (a) normal carotid bifurcation and (b) a ste-

nosed carotid bifurcation. They evaluated the hemodynamic parameters under diverse physiological 

conditions and comprehended the development of atherosclerosis in the carotid artery bifurcation for 

normal and hypertensive states. In their study on flow dynamics in patient-specific bifurcated carotid 

arteries, Hedge et al. [2] noted that the wall Shear Stress (WSS) is influenced by artery topology and 

blood flow characteristics (pulsatile nature and viscosity model), and maximum WSS occurs at loca-

tions with flow separation and high-velocity gradients. Their results from Computational Fluid Dy-

namics (CFD) simulations indicated that the Carreau model exhibits greater sensitivity to WSS com-

pared to the Casson model, especially at higher flow velocities during the systolic phase. A study by 

Harita and Anburajan [3] outlined the technical aspects of generating patient-specific Computer-
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Aided Design (CAD) models of the carotid artery (CA), both with and without plaque. They asserted 

that utilizing CT image analysis through specialized software enables these CAD models to replicate 

the patient's conditions accurately. Pinho et al. [4] created a computational model integrating transient 

carotid artery wall deformation and investigated the impact of artery compliance on WSS. For this, 

the required data was taken from ultrasound images of two patients, one with mild internal carotid 

artery (ICA) stenosis and another without visible stenosis. A study by Cui et al. [5] indicated that 

variations in the geometry and height of the carotid artery bifurcation angle and the carotid internal 

angle led to distinct patterns of laminar shear stress. Moreover, alterations in the artery bifurcation 

angle, including size and height, influenced extracellular matrix (ECM) and Yes-associated protein 

(YAP), resulting in diverse clinical manifestations. Hameed et al. [6] observed transitional flow in the 

post-stenotic region due to the elevated Reynolds number during peak systole. However, the flow 

demonstrated laminar characteristics at the peak diastole. They noted that the ICA stenosis induced 

elevated WSS, erratic flow patterns, and low-pressure regions. Velocity and pressure profiles oscil-

lated in the immediate downstream vicinity of the stenosis. Moreover, they observed that, in the 

stented model, the flow did not change into the turbulent regime in peak systole and diastole condi-

tions.  

Lopes et al. [7] conducted a systematic review to illustrate the methodology employed in modeling, 

simulating, and analyzing carotid blood flow while identifying potential gaps and challenges within 

this research field. Their key observations are: (i) Magnetic Resonance and Computed Tomography 

are the preferred techniques for acquiring images to construct 3D simulation models. (ii) Tradition-

ally, the carotid artery assumes Newtonian blood viscosity. Yet, recent findings revealed substantial 

differences in computed hemodynamic parameters like WSS between Newtonian and non-Newtonian 

models, suggesting the importance of considering blood as non-Newtonian. (iii) Laminar flow as-

sumption holds for healthy carotid artery models; however, in severely stenosed geometries, they 

suggested that careful consideration is needed due to the potential shift of fluid flow to transitional or 

turbulent. Furthermore, they identified patient-specific simulations of stented arteries as an emerging 

research avenue, which is crucial for anticipating the hemodynamic impacts of implant devices and 

potentially refining their design. Considering these observations, it is essential to acknowledge the 

following works: Mendieta et al. [8] conducted hemodynamic analysis on eight carotid arteries, six 

from patients with varying degrees of stenosis and two from healthy volunteers, using five viscosity 

models to assess differences in WSS-based parameters between Newtonian and non-Newtonian mod-

els. Their findings suggested that, for image-based computational simulation of atherosclerotic and 

healthy carotid arteries, the assumption of a Newtonian model is reasonable for OSI (oscillatory shear 

index) and pressure gradient.     Stamou et al. [9] examined the significance of integrating a non-

Newtonian model into a plaque deposition framework utilizing near-wall local hemodynamic mark-

ers: time-averaged near-wall velocity and the ratio of OSI to WSS. Plaque deposition outcomes were 

comparable between Newtonian and non-Newtonian simulations, with no more pronounced differ-

ences than those among selected markers. More substantial distinctions appeared in hemodynamic 

properties within the stenosed region, particularly the observation of reduced near-wall reverse flow 

in non-Newtonian fluid simulations. A study by Kumar et al. [10] focused on a subject-specific case 

involving partial narrowing of the entire cervical segment of the ICA, with the Common Carotid Ar-

tery (CCA) and External Carotid Artery (ECA) appearing normal. The study highlighted that plaque 

deposition is affected by alterations in lumen diameter and flow recirculation, various hemodynamic 

parameters, and blood rheology. Furthermore, the Carreau Yasuda model used in their research for 

evaluating the non-Newtonian properties of blood provided more precise approximations at critical 

locations than Newtonian properties. Gharahi et al. [11] worked on assessing the impact of various 

viscosity models on blood flow uncertainty by evaluating axial velocity, WSS, and OSI. Using PC-

MRI, they presented a workflow sequence in CFD analysis for a healthy subject. Subsequently, the 

hemodynamic parameters of a patient with carotid artery stenosis were analyzed. The simulations 

revealed that the lumped parameter model employed at the outlet produces physiologically reasonable 

values for hemodynamic parameters. Furthermore, their study observed variations in the dependence 

of hemodynamic parameters on viscosity models across different geometries. 

Furthermore, the distinct anatomical origins of the left and right common carotid arteries are crucial 

in determining blood flow variations. Studies reported by Sacco et al. [12] showed morphological var-

iations in the internal carotid artery (ICA) distribution based on the side where it is located. The authors 
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attributed these findings to the anatomical origins of the right and left common carotid arteries, poten-

tially favoring morphological variations in arteries directly originating from the aortic arch. Sabbagh, 

Essa, and Saleh [13] identified significant variations in the blood flow between right and left common 

carotid and internal carotid arteries in diabetic and hypertensive patients, notably in the young age 

group. They observed higher intima-media thickness and lumen diameter values across age groups in 

the left common carotid artery than in the right. The authors inferred that these anatomical distinctions 

in the origins of the common carotid artery contributed to different stress levels between the two sides.  

As can be seen, there has been limited research on the comprehensive analysis of the subject-specific 

hemodynamic characteristics of human carotid arteries. This study addresses this gap by developing 

subject-specific computational fluid dynamics (CFD) models based on MRI scans and analyzing the 

data using explainable AI techniques. The goal is to provide detailed insights into each artery's unique 

blood flow patterns and hemodynamic parameters, which could inform personalized medical interven-

tions and improve cardiovascular outcomes. The remainder of the paper is structured as follows:     Sec-

tion II outlines the anatomy of the carotid artery along with the research objectives. Section III elabo-

rates on the methodology, followed by data analysis in Section IV. Concluding remarks and limitations 

of the study are presented in section V. 

 

II. Problem Statement and Research Objectives 

The carotid artery supplies blood to the face, neck, and brain. The primary conduit, known as the CCA, 

is divided into two branches: the ECA and the ICA, as illustrated in Fig 1. The ECA supplies blood 

primarily to the face and neck, while the ICA delivers blood to the brain. 

 

 
Fig1. Anatomy of Carotid Artery [14, 15] 

 

Thus, studying blood flow in carotid arteries is crucial for assessing brain health, identifying and 

managing vascular diseases, and minimizing the risk of stroke. As mentioned earlier, this study ad-

dresses the challenge of forecasting blood flow dynamics in the subject-specific human carotid artery. 

We achieved this by creating a prototype of the artery using MRI images of both the left and right 

arteries (Fig 2). 

  
Left Artery Right Artery 

Fig 2. MRI images of subject-specific arteries. 
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These prototypes are imported into CFD software (Fig 3), where simulations are conducted under various 

physiological conditions to generate a comprehensive dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Prototypes created for simulation in COMSOL software. 

 

The research objectives are delineated based on identified gaps in the existing literature. The proposed objec-

tives to analyze the blood flow in the subject-specific carotid artery are as follows: 

➢ Determine an appropriate fluid (blood) model for the problem. 

➢ Identify the most precise ML or DL model for predicting physical quantities such as blood velocity, 

WSS, and pressure in the three arterial segments. 

➢ Detect anomalies (if any) in an artery. 

 

III. Methodology 

The main features of this fluid (blood) flow problem are mathematically described as follows: Blood, acting as 

the fluid for transportation, is represented as both a Newtonian and a non-Newtonian fluid—specifically, a 

Casson fluid—while the artery is modeled as a flexible conduit. As mentioned earlier, for simulation, subject-

specific prototypes for the left and right carotid arteries are captured from their MRI images and imported into 

COMSOL Multiphysics, a CFD software. To address the present problem, we adopted the time-independent 

momentum and continuity equations of incompressible fluids as shown below: 

 

Equation of Continuity: 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (1) 

Here u and v are the fluid velocity components along the x and y directions respectively. 

 

Equations of Momentum, 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) =  −

𝜕𝑝

𝜕𝑥
+[

𝜕

𝜕𝑥
𝜏𝑥𝑥 +

𝜕

𝜕𝑦
𝜏𝑦𝑥] + 𝜌𝑔𝑥 (2) 

 

𝜌 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) =  −

𝜕𝑝

𝜕𝑦
+[

𝜕

𝜕𝑥
𝜏𝑥𝑦 +

𝜕

𝜕𝑦
𝜏𝑦𝑦] + 𝜌𝑔𝑦 (3) 

 

Where, 

𝜏 = 2 𝜇𝑎𝑝𝑝𝐸 (4) 

 

For Newtonian fluid 

𝜇𝑎𝑝𝑝  =  𝜇 (5) 
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For Casson Papanastasion fluid 

𝜇𝑎𝑝𝑝 =  [√𝜇𝑝 + √
𝜏𝑦

𝛾̇
 [1 − 𝑒𝑥𝑝(−√𝑚𝑝𝛾̇)]]

2

 (6) 

 

Where,  

𝛾̇ =
1

2
[𝑡𝑟(𝐸2) − (𝑡𝑟(𝐸))

2
] (7) 

 

𝐸 =
1

2
 (∇𝑢 + (∇𝑢)𝑇) (8) 

 

Here 𝜇 is the viscosity, 𝜏 is the deviatoric stress, 𝜇𝑎𝑝𝑝 is the apparent fluid viscosity, 𝜇𝑝 is the plastic 

viscosity, 𝜏𝑦 is the yield stress, 𝑚𝑝 is the model parameter, 𝛾̇ is the shear rate, and 𝛾𝑟𝑒𝑓̇ is the reference shear 

rate, and p is the thermodynamic pressure. 

 

These equations are implemented using the laminar flow interface, operating under fully developed flow 

conditions with the following boundary conditions. 

 

Inlet boundary conditions: 

𝑢𝑎𝑣(𝑥, 𝑦) = 𝑢0 (9) 

 

Where, 

𝑢𝑎𝑣 = −
1

𝐴
 ∫ 𝑢. 𝑛𝑑𝑠

⬚

𝜕Ω𝑖𝑛𝑓
 (10) 

 

With 𝐴 =  ∫ 𝑑𝑠
⬚

𝜕Ω𝑖𝑖𝑛𝑓
 

 

Outlet boundary condition: 

 𝑝𝑎𝑣(𝑥, 𝑦) =  𝑝0 (11) 

 

Where, 

𝑝𝑎𝑣 = −
1

𝐴
 ∫ 𝑝𝑑𝑠

⬚

𝜕Ω𝑜𝑢𝑡
 (12) 

 

At the wall, we imposed the no-slip boundary condition given by, 

𝑢 = 0, 𝑣 = 0 (13) 

 

These governing equations, together with the above boundary conditions, are solved using the finite element 

method (FEM) inbuilt in the COMSOL software. A P1-P1 (linear) finite element discretization is applied to 

compute velocity and pressure, and the resulting system is solved using the PARDISO solver. 

 
IV. Data Analysis 

Data Collection: This section begins with a detailed procedure of the data collection method, followed by the 

analysis phase.  

Firstly, we introduce the dataset, features, and target variables taken for the study. The feature set, consisting 

of input parameters, includes fluid-related factors (e.g., blood density and viscosity), flow-related variables 

(such as inlet blood velocity), and material parameters specifying artery characteristics (namely, density, Pois-

son ratio, and Young's modulus). The target or output variables comprise the crucial physical quantities: WSS, 

average blood velocity, and average blood pressure. The values for fluid-related parameters are derived from 

existing data on human blood, while parameters characterizing the elastic behavior of the artery are drawn from 

anatomical data on the human vascular system. Table 1 shows the complete set of features taken in the study 

and their permissible values. Specifically, Table 1(b) values are derived from measurements of individual sub-

jects' artery dimensions (Fig 2) utilizing SolidWorks software. 
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Table 1(a). Data on Characteristics of Blood and Carotid Artery [14- 19] 

Fluid (blood) Properties Both the Artery Properties 

Density (kg/m3) 1060 Density 960  

Viscosity (Pa. s) 0.004 Young's Modulus (Pa) 490000 

  Poisson Ratio 0.45  

 

Table 1(b). Data on Characteristics of Blood and Carotid Artery  

Left Artery CCA  ICA ECA 
Bifurca-

tion Angle 

Internal Angle 

Diameter (mm) 5.9 3.9 2.8 
39.8° 145.2° 

Length (mm) 82.4 52 30 

Right Artery CCA ICA ECA 
Bifurca-

tion Angle 

Internal Angle 

Diameter (mm) 5.8 3.8 2.9 
31° 138.1° 

Length (mm) 76.1 58.2 28 

 
 Table 2 presents the data taken to carry out the simulation. For one specific set of parameters, data has been 

collected in the format shown in Tables 3(a)-3(d) for different mesh settings available in the software. 

 

Mesh Optimization: 

Mesh optimization was performed on numerical models designed for the left and right arteries. Results indi-

cated that a NORMAL mesh is optimal for the left artery, while an EXTREMELY FINE mesh is recommended 

for the right artery for data generation. The normal mesh constituted 1032 triangular and 510 quadrilateral 

segments, while the extremely fine mesh constituted 4191 triangular and 882 quadrilateral segments. Additional 

configuration details are shown in Tables 4(a) and 4(b).  

 

Table 2(a). Data on the Newtonian fluid model [14-21] 

 

  

 

 

 

 

 

 

Table 2(b). Data on Casson fluid model 

 

Table 3(a). Data collection format for Newtonian fluid Model 

RPr 

(mmHg) 

InVel 

(CCA) (m/s) 

D 

(kg/𝒎3) 

Vis              

(Pa. s) 

100 0.351 1060 0.0035 

120 0.193 1070 0.004 

130 0.1205 1075 0.0045 

RPr 

(mmHg) 

InVel 

(CCA) 

(m/s) 

D 

(kg/𝒎3) 

Vis                

  (Pa. s) 

 Plastic 

Viscosity 

Yield    

stress 

   Model pa-

rameter 

100 0.351 1060 0.0035 0.0035 0.0035 50-105 

120 0.193 1070 0.004 0.004 0.004  

130 0.1205 1075 0.0045 0.0045 0.0045  

    0..005 0.005  

Vis In 

Vel 

RefP

r 

ICA 

vel 

ECA 

vel 

CCA 

vel 

WSS 

ICA 

WSS 

ECA 

WSS 

CCA 

Pr 

ICA  

Pr 

ECA 

Pr 

CCA 
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Table 3(b). Description of Entries in Table 3(a) 

 

Table 3(c). Data collection format Casson-P Model (Non-Newtonian) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 3(d). Description of Entries in Table 3(c) 

D In Vel Ref 

Pr 

Y_

S 

Pl_Vis_

C 

MP

_C 

D_

C 

ICA 

vel 

ECA 

vel 

CCA 

vel 

WSS 

ICA 

WSS 

ECA 

WSS 

ECA 

ICA 

Pr 

ECA 

Pr 

CCA 

Pr 

                

Variable Type Name Description Units Data type 

Input variables 

(Features) 

Vis Blood viscosity Pa. s Numeric 

D Blood Density kg/m3 Numeric 

InVel Velocity at the CCA entrance m/s Numeric 

RPr Reference Pressure Pa Numeric 

Output variables 

(Target) 

ICAvel Blood velocity in ICA m/s Numeric 

ECAvel Blood velocity in ECA m/s Numeric 

CCAvel Blood velocity in CCA m/s Numeric 

WSSICA Wall Shear Stress in ICA Pa Numeric 

WSSECA Wall Shear Stress in ECA Pa Numeric 

WSSCCA Wall Shear Stress in CCA Pa Numeric 

PrICA Pressure in ICA Pa Numeric 

PrECA Pressure in ECA Pa Numeric 

PrCCA Pressure in CCA Pa Numeric 

Variable Type Name Description Units Data 

type 

Input variables (Fea-

tures) 

Vis Blood viscosity Pa. s Numeric 

D Blood Density kg/m3 Numeric 

InVel 
Velocity at the CCA en-

trance 

m/s Numeric 

RPr Reference Pressure Pa Numeric 

Y_S Yield Stress Pa Numeric 

Pl_Vis_C Plastic Viscosity Pa. s Numeric 

MP_C Model Parameter  Numeric 

D_C Density Casson kg/m3 Numeric 

Output variables 

(Target) 

ICAvel Blood velocity in ICA m/s Numeric 

ECAvel Blood velocity in ECA m/s Numeric 

CCAvel Blood velocity in CCA m/s Numeric 

WSSICA Wall Shear Stress in ICA Pa Numeric 

WSSECA Wall Shear Stress in ECA Pa Numeric 

WSSCCA Wall Shear Stress in CCA Pa Numeric 

PrICA Pressure in ICA Pa Numeric 

PrECA Pressure in ECA Pa Numeric 

PrCCA Pressure in CCA Pa Numeric 
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Moving ahead, these mesh configurations are adopted to generate the data for data analysis. Datasets are 

generated across diverse flow conditions and fluid properties, ensuring a comprehensive exploration of the 

blood flow dynamics in the arteries. To identify the optimal fluid model—whether Newtonian or Casson—for 

blood within these arteries, we assessed WSS, average blood velocity, and blood pressure using both Newtonian 

and Casson fluid models for each artery. 

 

Statistical Analysis:  

A comprehensive statistical analysis assessed potential differences in the data derived from these models. 

The methodology employed for this investigation is outlined as follows.  

 

1. Assess the normality of the target variable(s) distribution of both fluid models by employing the 

Anderson-Darling test, which is particularly suitable for unevenly sized samples. 

2. If the target variable exhibits normal distribution, conduct the z-test (parametric); otherwise, opt for 

Dunnett's test. 

3. Draw a conclusion based on the obtained p-value, considering its significance in the analysis. 

The statistical test details for the target variables in CCA, ICA, and ECA are shown in Table 5. The entry 

'No' in the 'Normally Distributed' column signifies a non-normally distributed data distribution. In the 'result' 

column, 'Yes' and 'No' entries indicate a significant and non-significant difference, respectively, in the distri-

bution of the target variable between the Newtonian and the Casson fluid models.  

 

Table 5. Statistical Analysis at RP 13332.2 Pa 

Target 

Variables 

Fluid 

Model 

LEFT Artery RIGHT Artery 

Normally 

Distributed 

Dunnett's test 

 
Normally 

Distributed 

Dunnett's test 

 

p-value result                        p-value result                        

Vel_CCA 
Newtonian 

No 0.835 No No 0.834 No 
Casson 

Vel_ICA 
Newtonian 

No 0.574 No No 0.574 No 
Casson 

Vel_ECA 
Newtonian 

No 0.835 No No 0.191 No 
Casson 

Pr_CCA 
Newtonian 

No 0.968 No No 0.370 No 
Casson 

Pr_ICA 
Newtonian 

No 0.994 No No 0.577 No 
Casson 

Pr_ECA 
Newtonian 

No 0.902 No No 0.541 No 
Casson 

WSS_CCA 
Newtonian 

No 0.0089 Yes No 0.1 No 
Casson 

WSS_ICA 
Newtonian 

No 0.003 Yes No 0.064 No 
Casson 

WSS_ECA 
Newtonian 

No 0.058 No No 0.053 No Casson 

    

  

Table 4 (b). Configuration Right Artery 

Number of elements   5073 

Number of Vertex elements 116 

Number of edge elements   510 

Average element quality   0.8227 

Minimum element quality   0.147 

Mesh area  2885mm2 
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Observations: 

➢ Both Newtonian and Casson fluid model predictions on all target variables are significantly dif-

ferent in left and right arteries, which is in tune with the reported in refs [12] and [13].  

➢ No statistically significant difference is evident in the target variables for the right artery. There-

fore, we chose to analyze the data produced using the Newtonian model to forecast the target 

variables for the same.  

➢ Predictions of WSS in CCA and ICA are significantly different for Newtonian and Casson fluid 

models for the left artery. Based on the statistics shown in Table 6 and the observations noted by 

Oshinski et al. [16], we opted for the Casson fluid model to predict the target variables in this 

artery. 

 

Table 6. WSS CCA Data for Left and Right arteries of the models 

Artery Model Maximum Mean 

Left 
Newtonian 0.2658 0.1461 

Casson P 0.3473 0.2042 

Right 
Newtonian 1.0528 0.5687 

Casson P 1.2281 0.3221 

 

Data Analysis: 

The descriptive statistics of the feature set used for the right and left arteries are presented in Tables 

7(a) and 7(b).  

 

Table 7(a). Descriptive statistics of data on RIGHT artery 

 Vis D InVel RPr 

count 192 192 192 192 

mean 0.004250 1068.3 0.228250 16332.0 

std 0.000560 6.252399 0.094813 1977.02 

min 0.003500 1060.0 0.105000 13332.20 

25% 0.003875 1060.0 0.158250 15332.15 

50% 0.004250 1070.0 0.228500 16665.35 

75% 0.004625 0.004625 91.250000 1075.0 

max 0.005000 0.005000 105.00000 1075.0 

 

Table 7(b). Descriptive statistics of data on LEFT artery 

 YS_C Pl_Vis_C MP_C D_C Inlet_Vel_C RPr 

count 768 768 768 768 768 768 

mean 0.004250 0.004250 77.500000 1068.3 0.228250 16332.0 

std 0.000559 0.000559 17.271511 6.24 0.094627 1973.2 

min 0.003500 0.003500 50.000000 1060.0 0.105000 13332.2 

25% 0.003875 0.003875 63.750000 1060.0 0.158250 15332.2 

50% 0.004250 0.004250 77.500000 1070.0 0.228500 16665.4 

75% 0.004625 0.004625 91.250000 1075.0 0.298500 17665.2 

max 0.005000 0.005000 105.000000 1075.0 0.351000 18665.1 

 
These tables reveal that data has been generated for 192 combinations of features to examine hemodynamics 

in the left artery, while up to 768 datasets have been generated for the right artery. A snapshot of the velocity 

and absolute pressure profiles for a specific set of features is presented in Figs 4 and 5. 
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Fig 4. Velocity and Pressure profiles in the Left artery using the Casson fluid model  

when RPr = 13332.2, InVel = 0.351 

 

 
Fig 5. Velocity and Pressure profiles in the Right Artery using the Newtonian fluid model 

when RPr = 13332.2, InVel = 0.351 

 

Observing these profiles, it becomes evident that the blood velocity in the right artery is lower than in the left. 

Significantly, the absolute pressure contours in the left artery reveal negative average absolute pressures in the 

CCA and its bifurcations, suggesting potential abnormalities in its health. Similar trends have been noted for 

other sets of model parameters. Our next phase involves developing ML and DL models tailored for simulated 

data. In this stage, we will use the insights and patterns extracted from the data to construct predictive models. 
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Fig 6. Workflow chart 

 
Fig 6 illustrates the workflow chart for performing data analysis. The simulated data is initially scrutinized 

to detect correlation within the feature set. Subsequently, feature engineering is carried out to identify an 

uncorrelated feature dataset for the target variables, as indicated in Table 8. 

 

Table 8. Feature sets and the Target variables  

Target Variable Feature Variable Included VIF 

Feature 

Variable 

Excluded 

VIF 

LAR_ICAvel YS_C, PlVis_C, MP_C, 

D_C, CCAvel_C, RPr 
>5 D_C <1.1 

LAR_ECAvel YS_C, PlVis_C, MP_C, 

D_C, CCAvel_C, RPr 
>5 D_C <1.1 

LAR_CCAvel YS_C, PlVis_C, MP_C, 

D_C, CCAvel_C, RPr 
>5 D_C <1.1 

WSSICA_C YS_C, PlVis_C, MP_C, 

D_C, CCAvel_C, RPr 
>5 D_C <1.1 

WSSECA_C YS_C, PlVis_C, MP_C, 

D_C, CCAvel_C, RPr 
>5 D_C <1.1 

WSSCCA_C YS_C, PlVis_C, MP_C, 

D_C, CCAvel_C, RPr 
>5 D_C <1.1 

RAR_ICAvel Vis, D, InVel, RPr, CCAvel  >5 InVel <1.1 

RAR_ECAvel Vis, D, InVel, RPr <1.1 - - 

RAR_CCAvel Vis, D, InVel, RPr <1.1 - - 

WSSCCA Vis, RPr, CCAvel, InVel, D >5 InVel <1.1 

WSSECA Vis, D, RPr, ECAvel, InVel >5 InVel <1.1 

WSSICA Vis, D, RPr, ICAvel, InVel >5 InVel <1.1 

 
We then analyzed the data using various ML and DL models, linear regression, polynomial, decision tree, 

random forest, bagging and boosting algorithms, and Neural networks to identify the most suitable model for 

the simulated data. Based on the performance metrics, MAE (mean absolute error), MPE (mean percentage 

error), RMSE (Root mean square error), R2, and adjusted R2, we identified the most accurate ML model for 

predicting the target variables as presented in Table 9.  
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Table 9. ML model for predicting Target variables. 

 

 

 

 

 

 

 

 

 

 
 

 

 

Table 10. Optimized values of hyperparameters for target variables in NN models for Left Artery 

Target Variable Batch Size Epoch 

ICA_vel 100 200 

ECA_vel 50 60 

CCA_vel 100 200 

WSSICA 100 200 

WSSECA 50 60 

WSSCCA 50 60 

 
Table 11. Most reliable ML and NN models for predicting Target variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 
While the Mean Absolute Error (MAE) metric is valuable for evaluating viable regression models, it is crucial 

to integrate the quantile loss function for a more comprehensive assessment [15]. This approach aids in identi-

fying the most reliable regression models by considering prediction uncertainty, thereby fostering a more robust 

understanding of their efficacy. Consequently, the final phase of our analysis focuses on quantifying the inher-

ent prediction uncertainty in these models. We investigated the extent of uncertainty surrounding point predic-

tions by employing the Quantile loss function. The quantile loss at 0.1, 0.5, and 0.9 quantiles exhibited an order 

of magnitude of 10-3 for the target variables in the right artery. In contrast, the corresponding quantile losses 

for the target variables in the left artery were of the order of 10-1. Consequently, neural network (NN) models 

were constructed for the target variables in the left artery, and we optimized the hyper-parameters presented in 

Table 10. The quantile losses are visually represented in Figs  7-12, and the most reliable predictor models are 

presented in Table 11.  

 

Target Variable Best ML Model 

LAR_ICA_Vel Random Forest Tuned 

RAR_ICA_Vel Gradient Boost Regressor 

LAR_ECA_Vel XGBoost Regressor 

RAR_ECA_Vel Gradient Boost Regressor 

LAR_CCA_Vel Random Forest Tuned 

RAR_CCA_Vel Gradient Boost Regressor 

LAR_WSS_ICA Random Forest Tuned 

RAR_WSS_ICA XGBoost Regressor 

LAR_WSS_ECA Random Forest Tuned 

RAR_WSS_ECA XGBoost Regressor 

LAR_WSS_CCA XGBoost Regressor 

RAR_WSS_CCA XGBoost Regressor 

Target Variable Based on the Quantile Loss Best Model 

LAR_ICA_Vel Neural Network 

RAR_ICA_Vel Linear Regression 

LAR_ECA_Vel Neural Network 

RAR_ECA_Vel Gradient Boost Regressor 

LAR_CCA_Vel XGBoost Regressor 

RAR_CCA_Vel Polynomial Regressor (Degree 4) 

LAR_WSS_ICA Polynomial Regressor (Degree 4) or Neural Network 

RAR_WSS_ICA Polynomial Regressor (Degree 5) 

LAR_WSS_ECA Neural Network 

RAR_WSS_ECA Polynomial Regressor (Degree 5) 

LAR_WSS_CCA Polynomial Regressor (Degree 5) 

RAR_WSS_CCA Polynomial Regressor (Degree 5) 
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Fig 7. Quantile Loss per quantile for Velocity in ECA of Left & Right Arteries 

Fig.8. Quantile Loss per quantile for Velocity in ICA of Left & Right Arteries 

Fig 9. Quantile Loss per quantile for Velocity in CCA of Left & Right Arteries 
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Fig 10. Quantile Loss per quantile for WSS in CCA of Left & Right Artery 

Fig 11. Quantile Loss per quantile for WSS in ICA of Left & Right Arteries 

Fig 12. Quantile Loss per quantile for WSS in ECA of Left & Right Arteries 

 

In addition, we identified the most important feature affecting each target variable and presented it in Table 

12.  
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Table 12. Feature importance for target variables 

Feature  Left _Casson Right Newtonian 

ICA_Vel 
CCA_Vel CCA_Vel 

Pl_Vis - 

ECA_Vel 
CCA_Vel CCA_Vel 

Pl_Vis - 

WSSICA 

ECA_Vel ICA_Vel 

ICA_Vel Viscosity 

Pl_Vis - 

WSSECA 
ECA_Vel ECA_Vel 

Pl_Vis Viscosity 

WSSCCA 
ECA_Vel CCA_Vel 

Pl_Vis Viscosity 

 

Results and Discussion:  

To enhance our understanding of how each feature influences the target variables, we employed Shapley Ad-

ditive exPlanations (SHAP) values in our analysis using the ML algorithms presented in Table 9 for computing 

SHAP values in each arterial segment. 

 
 

SHAP analysis of data on the Right artery: 

Fig 13. The SHAP and mean SHAP values for the Right artery ECA velocity 

Fig 14. The SHAP and mean SHAP values for the Right artery ICA velocity 

 
Observations: 
Significance of CCA velocity: From Figs 13 and 14, SHAP analysis reveals that the most significant factor 

affecting blood velocity in both ECA and ICA is the blood velocity in the CCA. This implies that changes in 

blood velocity in the CCA especially impact the velocities in the other segments. 

Impact of CCA velocity on bifurcated components: The SHAP analysis further reveals that when the blood 

velocity in the CCA is higher than the average velocity, it positively affects the velocities in its bifurcated 

segments (ECA and ICA). Conversely, if the CCA velocity is lower than average, the velocities in these bifur-

cated segments significantly reduce. 

Less significance of other factors: The features- blood viscosity, density, and reference blood pressure are 

mentioned to have very little significance on the velocities in all three segments (ECA, ICA, and CCA).  
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Fig 15. The SHAP and mean SHAP values for the Right artery WSSCCA 

Fig 16. The SHAP and mean SHAP values for the Right artery WSSECA 

Fig 17. The SHAP and mean SHAP values for the Right artery WSSICA 

 

Observations: 

Significance of blood velocities and viscosities: From Figs 15-17, SHAP analysis reveals that the blood ve-

locities in each segment significantly contribute to the WSS experienced in that segment. It also indicates that 

blood viscosities play a significant role in determining WSS. This implies that changes in blood velocity and 

viscosity directly influence the magnitude of WSS experienced by the walls of the vessels. 

Impact of velocities and viscosities on WSS: When the blood velocities and viscosities are greater than the 

average values in each segment, they positively impact the WSS. This means that higher velocities and viscos-

ities lead to increased WSS, suggesting a more significant shear force acting on the vessel walls. Conversely, 

lower blood velocities and low viscosities in the segment are stated to significantly reduce the WSS in them. 

This indicates that reduced velocities and viscosities result in lower shear stress on the vessel walls. 

Limited impact of other features: Features other than blood velocities and viscosities do not affect WSS. This 

suggests that factors such as blood density, reference blood pressure, or possibly other biological or environ-

mental variables under consideration have negligible influence on the WSS experienced by the vessel walls. 

 

SHAP analysis of data on LEFT artery: 

Fig 18. The SHAP and mean SHAP values for the Left artery ECA velocity 
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Fig 19. The SHAP and mean SHAP values for the Left artery ICA velocity 

 
Observations: 

From Figs 18 and 19, SHAP analysis reveals that the most significant factor affecting blood velocity in both 

ECA and ICA is the blood velocity in the CCA. Further, when the blood velocity in the CCA is higher than the 

average velocity, it positively affects the velocities in its bifurcated segments (ECA and ICA). Conversely, if 

the CCA velocity is lower than average, it significantly reduces the velocities in these bifurcated segments. 

 

Fig 20. The SHAP and mean SHAP values for the Left artery WSSICA 

Fig 21. The SHAP and mean SHAP values for the Left artery WSSCCA 

Fig 22. The SHAP and mean SHAP values for the Left artery WSSECA 

 

Observations:  

From Figs 20-22, SHAP analysis reveals that the blood velocities in each segment significantly contribute to 

the WSS experienced in that segment. Additionally, it indicates that blood viscosities also play a significant 

role in determining WSS, the predominant effect on the WSS in ICA and ECA. 

 

Conclusions  

This study investigated the distinct hemodynamic properties of the carotid arteries of a subject-specific data, 

providing insights into blood circulation and fluid dynamics in these critical vessels. To achieve this, we 

developed Computational Fluid Dynamics (CFD) models of the left and right carotid arteries using MRI scans 

from a single individual. These models were simulated under various physiological conditions, with the re-

sulting data analyzed using machine and deep learning techniques to capture differences in flow characteris-

tics. Results showed significant differences in parameters like wall shear stress(WSS) and blood velocity 

between the left and right arteries. Further analysis indicated potential health risks in the left carotid artery. 

The SHAP analysis revealed that blood velocity in the common carotid artery (CCA) is the dominant factor 

influencing blood flow in the internal (ICA) and external carotid arteries (ECA). When the blood velocity in 
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the CCA is high, it increases the flow in both the ICA and ECA. Conversely, lower blood velocities in the 

CCA result in decreased flow in the ICA and ECA. Blood velocity and viscosity are the main factors impact-

ing WSS in each artery segment, with higher values elevating WSS and lower values reducing it. Other vari-

ables, such as blood density and reference pressure, have minimal influence on blood flow and WSS. 
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