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Abstract 

Malaria, an infectious disease caused by parasites and transmitted by Anopheles mosquitoes, 

affects individuals of all ages globally, including Bangladesh. In this work, we develop a 

transmission dynamics of malaria model between humans and mosquitoes and analyze its 

properties and solutions. Using the Next-Generation Matrix methods, our estimation of the 

fundamental reproduction number, R₀, shows that malaria spontaneously ends when R₀ is 

smaller than 1. On the other hand, malaria continues to exist within the populace if R₀ is larger 

than 1. We calibrate our proposed model with Bangladeshi malaria incidence data from 2010 to 

2022 to estimate some model parameters. We also performed numerical analysis to support our 

analytic results and explored the impact of different parameters, finding that the infection 

dynamics are highly sensitive to variations in the transmission rates and the basic reproduction 

number, R0. Specifically, when R0 <  1, the disease tends to die out with lower levels of 

infected individuals in both human and mosquito populations, whereas for R0 >  1, the infection 

spreads rapidly, leading to higher infection levels. Furthermore, higher human-to-mosquito 

transmission rates and loss of immunity significantly intensify the spread of malaria, 

emphasizing the need for targeted interventions. On the other hand, increased disease-related 

and recovery rates help reduce transmission. We used the sensitivity index to measure how the 

model's output changes in response to its input parameters. The results indicate that the rates of 

mosquito and human interaction significantly impact the prevalence of malaria. Finally, we 

performed a bifurcation analysis to explore the corresponding model parameters and 

demonstrated the stability of the situation. The findings of this analysis give policymakers 

guidance regarding the best course of action for reducing the burden of malaria in Bangladesh. 
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1. Introduction 

Malaria affects over 300 million people in 90 countries worldwide, causing 

approximately one million deaths each year. By 2020, more than half the 

world’s population was at risk of contracting malaria. In 2022, there were 249 

million malaria infections globally, an increase of 16 million cases compared to 

the pre-pandemic figure of 233 million in 2019. The disease is transmitted by 

female Anopheles mosquitoes and can infect both humans and insects. Four 

species of the Plasmodium parasite cause malaria: Plasmodium malariae, P. 

ovale, P. falciparum, and P. vivax.According to the latest World Malaria Report, 

29 million people were infected with malaria in 2022, up from 24 million in 

2021. The estimated number of malaria-related deaths slightly decreased, from 

610,000 in 2021 to 608,000 in 2022. Annually, between 100 and 400 million 

people are affected by malaria, out of the 2.5 billion at risk from Plasmodium 

vivax malaria [1, 2]. While the majority of cases and deaths occur in Sub-

Saharan Africa, significant numbers are also reported in the Americas, 

Southeast Asia, the Eastern Mediterranean, and the Western Pacific, according 

to the World Health Organization (WHO). 

Malaria is a common disease in tropical regions, with its local risk influenced 

by a combination of climatic, environmental, and societal factors. Climate 

conditions such as humidity, rainfall, and temperature significantly affect 

mosquito growth. Current research indicates that temperature plays a significant 

role in the spread of malaria in tropical and subtropical areas. According to Liu 

[3], extreme temperatures extend the lifespan of mosquitoes and shorten the 

time it takes for the malaria parasite to develop outside the mosquito. Rainy 

seasons create breeding habitats for mosquito eggs and support the growth of 

larvae that carry the disease [4]. Malaria manifests as an acute febrile illness. In 

people without immunity, symptoms generally appear 10-15 days after being 

bitten by an infected mosquito. Diagnosing malaria can be difficult since its 

initial symptoms, including fever, headache, and chills, are mild and not specific 

to the disease. As the disease progresses, symptoms can become more severe 

and include intense headaches, rashes, muscle and joint pain, and a fever that 

ranges from mild to incapacitating. In severe cases of Plasmodium vivax 

malaria, symptoms may include reduced consciousness, repeated seizures, 

extreme fatigue, abnormal bleeding, pulmonary edema (detectable via 

radiology), respiratory failure (acidotic breathing), and jaundice [5]. Currently, 

there is no specific treatment for malaria. The only effective way to prevent and 

manage the disease is through mosquito control or by preventing human-vector 

contact. 

The World Health Organization (WHO) considers malaria a significant public 

health issue in Bangladesh. The Bangladeshi government tried to eliminate 

malaria in the 1960s, which nearly succeeded. Although the disease was nearly 

eradicated by the 1970s, it persisted in the eastern regions, particularly in areas 

with tea gardens and forests. However, the effort was abandoned during the 
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liberation struggle in 1971, leading to a resurgence of the disease. In response, 

the National Malaria Control Program (NMCP) was established in 1977 to 

control malaria. In the 1990s, malaria re-emerged as a major health concern, 

and it remains a serious issue today. Malaria transmission occurs mainly in 

Bangladesh's border areas for most of the year. Thirteen districts, primarily in 

the east and northeast of the country, lie in the high-risk malaria zone. These 

districts share borders with the Indian states of Assam, Tripura, and Meghalaya, 

as well as a part of Myanmar, with adults being the most impacted. 

In 2002, there were 93 reported deaths, with a case fatality rate of 1.7% [6]. 

However, there were frequent instances of underreporting and misclassification 

of malaria cases. In 2006, routine laboratory surveillance in Bangladesh 

identified only 48,248 confirmed cases out of the roughly 2.9 million reported 

parasitic infections. Since 2007, NMCP efforts have accelerated significantly 

due to funding from the Global Fund, collaboration with academic and research 

institutions, and the support of a 21-member NGO consortium led by BRAC. 

Despite these efforts, by 2014, there were 57,480 confirmed malaria cases—

almost double the number reported in 2013 [7]. The current malaria outbreak in 

the country is periodic and geographically concentrated. This situation 

highlights the need to study how specific malaria serotypes invade and survive 

in particular areas. Epidemiological models—both deterministic and 

stochastic—are valuable for analyzing the transmission dynamics of past 

outbreaks, such as those seen in the mid-20th century. Models like those 

developed by Tilahun et al. (2020) [8] use mathematical concepts to simulate 

real-world events and predict the severity of infectious diseases. These tools are 

crucial for policymakers, enabling them to evaluate health risks and gain a 

deeper understanding of disease transmission dynamics. 

Various mathematical frameworks have been developed and analyzed to 

understand the spread of infectious diseases. One of the foundational 

contributions came from Kermack and McKendrick, who used a system of 

differential equations to describe disease transmission dynamics in their series 

of papers published in 1927 [7–11]. They introduced the concept of a threshold 

parameter that separates different dynamic regimes, with the idea that an 

infectious disease can only spread in a population if the basic reproduction 

number (R₀) exceeds a certain threshold. Mathematical models, due to their 

stronger computational predictive power, have proven to be more useful than 

statistical models for studying factors that influence the transmission of malaria 

[12–14]. These models can be informed by research findings and biological 

insights [15]. Different compartmentalized epidemiological models can be 

expressed using continuous modeling approaches, such as ordinary differential 

equations (ODEs), fractional differential equations (FDEs), and partial 

differential equations (PDEs) [16–19]. Modeling has become an essential tool 

in understanding malaria transmission dynamics, supporting control efforts, and 

identifying factors that influence the spread of the disease. For instance, Shikha 

[20] explored how population migration contributes to the rise in malaria cases. 
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She suggested employing SIS (susceptible-infectious-susceptible) and SIRS 

(susceptible-infectious-recovered-susceptible) epidemic models to study the 

scenario. In their study, Singh et al. (2005) applied the SIR (susceptible-

infectious-recovered) model to analyze malaria transmission in Bangladesh. 

This approach allows a better understanding of how the disease spreads within 

the population and provides valuable insights for disease control and prevention 

efforts. 

The spread of malaria in Bangladesh’s cities can be estimated using 

mathematical models. These models enhance our understanding of genetic 

differences in infectious pathogens and the factors essential for diagnosis and 

treatment [21–27]. By defining the necessary criteria for disease elimination, 

mathematical models can also improve infectious disease surveillance and 

inform health policy [27–29]. Mathematical models play a crucial role in 

controlling malaria by identifying the extent of transmission and offering 

insights for epidemic control and prevention. They can help predict future 

outbreaks and enhance prevention strategies to avoid endemic diseases. Several 

factors, such as geographic expansion, increased transmission intensity in 

endemic regions, local climate variability, and habitat conditions, have 

contributed to a rise in malaria cases in Bangladesh. Combining pharmaceutical 

therapy with vector control is the most effective way to achieve a swift reduction 

in malaria cases. Doran et al. (2018) developed a malaria model that included 

these prevention strategies and performed a cost-effectiveness analysis [30]. To 

better understand malaria transmission in Bangladesh, Rahman et al. (2020) 

created a model showing that socioeconomic factors, such as education, play a 

critical role in developing and mitigating the disease [6]. Koutou et al. (2018) 

designed a malaria model to study global patterns of virus transmission and the 

vector-borne population, finding that the basic reproduction number (R₀) is key 

to understanding malaria dynamics in both endemic and epidemic stages [31]. 

Understanding the transmission dynamics of malaria is essential for devising 

effective control strategies. This study presents a mathematical model that 

incorporates non-linear infection rates, bifurcation analysis, and sensitivity 

analysis to provide insights into malaria control efforts. We developed and 

analyzed a human-mosquito malaria model consisting of two compartments for 

mosquitoes and three for humans. The model was examined both analytically 

and numerically from mathematical and biological perspectives. A key factor 

controlling the system's dynamics was identified, and the basic reproduction 

number was calculated using the next-generation matrix approach. We outlined 

the conditions under which malaria persists or is eradicated, emphasizing the 

model's behavior at different stages. To validate and support our analysis, we 

numerically solved the model’s equations and studied the epidemic’s trajectory 

across a range of plausible parameter values and initial conditions. First, we 

applied the Routh–Hurwitz criteria to assess the local stability of both endemic 

and disease-free equilibria. Next, we conducted a sensitivity analysis to 

determine the parameters that impact malaria prevalence most. Finally, 
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computational simulations and graphical interpretations were performed to 

examine the effects of key factors, including disease transmission rate, mortality 

rate, recovery rate, and immunity loss. Additionally, bifurcation analysis was 

conducted to gain a deeper understanding of the system’s stability. 

The structure of the paper is as follows: Sections 2 and 3 present the theoretical 

representation of the model, along with the necessary assumptions and 

solutions. Sections 4 and 5 cover the stability analysis and estimation of the 

model’s parameters, respectively. Numerical simulations are provided in 

Section 6 to support the analytical findings. In Section 7, we carried out the 

bifurcation analysis. Sensitive analysis is performed in section 8. Finally, the 

model's results, discussion, and conclusion are presented in section 9. 

 

2. Methods and Materials 

We develop a compartmental model that classifies humans into susceptible, 

infectious, and recovered groups, while mosquitoes are categorized as 

susceptible and infectious. The model accounts for transmission dynamics, 

recovery, and immunity loss. The governing equations are derived using 

ordinary differential equations (ODEs) and incorporate biologically relevant 

parameters. 

2.1. Model descriptions and analysis 

Two mathematically deterministic models were developed: one for the human 

compartment, following a Susceptible–Infected–Recovered–Susceptible 

(SIRS) structure, and another for the mosquito compartment, following a 

Susceptible–Infected (SI) structure. 

 

Fig. 1: A flow chart representing the computational representation of malaria. 
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The entire human population, represented by Nₕ (t), is divided by the model into 

the subsequent sub-classes: individuals with a higher risk of malaria Sₕ (t), those 

who exhibit symptoms of malaria Iₕ (t), and those who have recovered from 

malaria Rₕ (t). The entire number of people at any given moment t is specified 

as 

Nh(t)  =  Sh(t)  +  Ih(t)  +  Rh(t),                                                                                     (1)  

which is said to be erratic, with people mixing at random. Susceptible 

mosquitoes (Sv) and infectious mosquitoes (Iv). make up the two 

subpopulations of the entire mosquito population, represented as Nv(t). The 

mosquitoes have no recovered class and are always contagious [32, 33]. 

Therefore, at every given moment t, the overall number of mosquitoes in the 

population is provided by, 

Nv(t)  =  Sv(t) + Iv(t),                                                                                                             (2)  

Assumed in this instance is that a contagious female anopheles mosquito Iᵥ (t), 

bites vulnerable people, Sₕ (t), and uses its beak to pierce the skin and inject a 

salivary enzyme that enters the circulation to keep the victim's blood from 

clotting. A fraction of those exposed develop active malaria and migrate at a rate 

of βₕ to the affected human compartment Iₕ (t). On the other hand, the disease-

related mortality rate for active malaria cases is δₕ.  After a short period, the 

malaria cases that infected individuals recover at a pace of ω and move on to 

the section reserved for recovered participants Rₕ (t).  The pace of loss of 

immunity causes an amount γ from the cured individuals' section Rₕ (t)to shift 

into the entirely susceptible human section Sₕ (t). 

Concurrently, upon the bite of a contagious person by the vulnerable mosquito, 

Sᵥ (t), with a likelihood βᵥ, the parasite combines with the mosquito, causing the 

mosquito to migrate from its susceptible compartment Sᵥ (t) to the mosquito-

infected chamber Iᵥ (t). Nevertheless, δᵥ is the disease-related death rate of the 

affected mosquito. Natural mortality occurs at a rate µₕ for human populations 

and µᵥfor mosquito populations. Figure 1 displays the model flow diagram. 

The following two nonlinear ordinary equations describe the model, which 

derives the transmission of mosquito and human populations from the above:  

{
 
 
 

 
 
 
dSh

dt
= μhNh + γRh − βhShIv − μhSh

dIh

dt
= βhShIv − (ω + δh + μh)Ih       

dRh

dt
= ωIh − (γ + μh)Rh                       

dSv

dt
= μvNv − βvSvIh − μvSv               

dIv

dt
= βvSvIh − (δv + μv)Iv                 

                                                                             (3) 
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Given the aforementioned system's non-negative beginning conditions:  

Sh(0) = Sh0, Ih(0) = Ih0, Rh(0) = Rh0, Sv(0) = Sv0, Iv(0) = Iv0 for all t > 0. 

With non-negative initial conditions, it is evident that all state variables will stay 

non-negative for t > 0. Furthermore, by summing Eqs. (3), we observe that the 

total population of humans, Nh(t), and mosquitoes, Nv(t), remain consistent over 

time 

dNh

dt
= 0 and 

dNv

dt
= 0.  

Integrating these equations, we find 

Nh= constant and Nv = constant.  

This shows that the total human and mosquito populations are constant and it 

naturally follows that each compartment states Sh, Ih, Rh and Sv, Ivare bounded.  

 

 

2.2. Basic reproduction number 

The model comprises three uninfected states (Sh, Rh, and Sv)and two infected 

states, (Ih, Iv). Despite the fact that the model has five states and a fluctuating 

overall population number. Since Ih
0 = Iv

0 = Rh = 0 at the disease-free steady 

state, Sh = Nh and Sv = Nv. Only through Nh and Nv, either explicitly or 

implicitly, do the state variables Sh and Sv in Eq. (1) arise. Sh, Sv and Rhdo not 

occur with other state variables as a result, (Ih, Iv), we have the following 

system: 

{

dIh

dt
= βhShIv − (ω + δh + μh)Ih

dIv

dt
= βvSvIh − (δv + μv)Iv          

                                                                                (4) 

The differential equations (4) belong to the category of infectious subsystems 

since they solely account for creating new infections and modifying existing 

infections' states. Assuming that XT  =  (Ih, Iv)
T, T stands for transposition, we 

should now express the infection subsystem as follows: 

Ẋ  =  (F +  V)X.                                                                                               (5)  

The transmission matrix is represented by F, and transitions by matrix V. The 

matrices are obtained from the system of Equation (4) by separating the 

transmission events from other events. Concerning the afflicted states indicated 



ISSN:0265-086X Vol. 43 (n. 5, 2025) 

204

 

by indexes i and j, where i, j ∈ 1, 2, entry Vij represents how frequently those 

residing in an infected state j procreate inside the system with humans in an 

infected state i. Thus, for Equation (4), we get 

F = [
0 βhSh

βvSv 0
] 

and 

V = [
−(ω + δh + μh) 0

0 −(δv + μv)
] 

The next generation matrix, K, is presented in [10], with attention to the crucial 

negative sign, 

K = −FV−1 = F(−V−1) =

(

 
 

0
Shβh
δv + μv

Svβv
ω+ δh + μh

0
)

 
 

 

The fundamental reproduction numbers of malaria, or the median number of 

additional infections created by an infected individual, are represented by the 

dominating eigenvalues of K. Therefore, the fundamental reproduction number 

is  

R0 = √
NhμhβhNvμvβv

(δv + µv)(ω + δh + µh)
.                                                                                  (6)  

In (6), 
1

(ωh+δh+µh )
shows how long the human infectious phase usually lasts; 

μv

(δv+µv)
 is the likelihood that mosquitoes will remain exposed and spread the 

disease. Let R₀, the fundamental reproduction number, be expressed as 

R0 = √R0hR0v                                                                                                   (7)  

where R0h  =  
Nhμhβh

(ω+δh+µh )
and R0v =

Nvμvβv

(δv+µv)
 

The total number of people in a fully susceptible human population that an 

infected mosquito infects throughout its expected infection period is represented 

by R₀ₕ in this case, however, R₀ᵥ represents the entire number of mosquitoes 

within a susceptible population that contract an illness from a single infected 

person within the duration of the infection. 



ISSN:0265-086X Vol. 43 (n. 5, 2025) 

205

 

3. Model analysis 

Here, we list the fundamental characteristics of the suggested malaria model (3). 

3.1. Equilibrium analysis 

This system yields two distinct types of equilibria. First, the disease-free 

equilibrium occurs when the basic reproduction number R0 is less than one (i.e, 

R0 <  1), indicating that the disease cannot sustain itself in the population. 

Conversely, when R0 exceeds one (i.e., R0 >  1), the system reaches an endemic 

equilibrium, signifying a stable presence of the disease. Importantly, a disease-

free equilibrium always exists in the equations specified in (3) 

E0 = ( S0h, I0h , R0h , S0v, I0v )  =  (Nh, 0, 0, Nv, 0).  

We may also determine the disease-endemic equilibrium from Equation (3) 

E∗  =  ( Sh
∗  , Ih

∗  , Rh
∗  , Sv

∗ , Iv
∗)at which malaria continues to exist in populations 

of mosquitoes and humans:  

{
 
 
 
 

 
 
 
 Sh

∗ =
Nhμh

R0
2 (βvIh

∗ + μv)                                                                   

Ih
∗ = Nhμh (1 −

μhμv

R0
2 ) [

μh
2Nhβv

R0
2 + (ω + δh + μh) −

γω

γ+μh
]
−1

R∗ =
ωIh

∗

γ+μh
                                                                                          

Sv
∗ =

μvNv

βvIh
∗+μv

                                                                                     

Iv
∗ =

βvSvIh
∗

δv+μv
                                                                                       

                            (8) 

According to Equation (8), in all of the above-mentioned components ( Sh
∗  ,

Rh
∗  ,  Sv

∗ , Iv
∗) , getting R0 >  1 is an adequate prerequisite for the non-negative 

status of the Indigenous community Ih
∗ . This is because the endemic 

equilibrium zone in which the criterion Ih
∗ >  0 needed R0 >  1. Thus, 

Equation (3) has an endemic equilibrium E∗  =  ( Sh
∗  , Ih

∗  , Rh
∗  , Sv

∗ , Iv
∗  ) if R0 >

 1. 

 

4. Stability analysis 

The equilibria of Equation (1) are investigated for stability, and the following 

findings are made. 

4.1. Disease-free equilibrium 

The model's disease-free equilibrium is analyzed using the Jacobian matrix 

and Routh-Hurwitz criteria, confirming local stability when R₀ < 1. 
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Lemma 1: R₀ < 1 indicates the local stability of the model's disease-free 

equilibrium, whereas R₀ > 1 indicates instability. 

Proof: We derive the Jacobian matrix from Equation (3), which results in 

J

=

(

 
 

−(βhIv + μh) 0   γ                     0               −βhSh
βhIv −(μh + δh +ω)   0                     0                  βhSh
0
0
0

ω
−βvSv
βvSv

−(γ + μh)
0
0

0
−(μv + βvIh)

βvIh

0
0

−(μv + δv))

 
 

 

which, at E₀, the equilibrium without illness, decreases to 

J(E0) =

(

 
 

−μh 0   γ            0     −βhNh
0 −(μh + δh +ω)  0            0        βhNh
0
0
0

ω
−βvNv
βvNv

−(γ + μh)
0
0

0
−μv
0

0
0

−(μv + δv))

 
 

 

To confirm the stability of E0, all eigenvalues of J(E0) must be shown to have 

negative real parts. Since in the first and fourth columns, only the diagonal 

elements are shown that makeup −µh and −µv, the two negative eigenvalues. 

Similarly, the only diagonal term in J(E0)'s third column is −(γ + µh), which 

is a negative eigenvalue. Using the corresponding characteristic equation, the 

next four eigenvalues are found: 

(λ +  ω + δh  +  µh) (λ + δv  +  µv)  −  NhNvβhβv  =  0                               (9) 

Consider, A1  = ω + δh  +  µh and A2  =  δv  +  µv, then (9) becomes  

B1λ + B0  =  0                                                                                            (10)  

where, B1  =  (A1  +  A2)  and B0  =  A1A2  − NhNvβhβv = A1A2 −
ShSvβhβv                                                                                                       (11)  

Additionally, modifying B0 in relation to R0, the basic reproduction number 

produces,  

B0  =  A1A2(1 − R0
2  )                                                                                  (12)  

The Routh-Hurwitz criteria [34, 35] is utilized, indicating that for i = 1, 2, every 

root of the polynomial (10) includes negative real portions if and only if all the 

coefficients Biare positive as well as the matrices Hi >  0. It may be concluded 

that if B1 >  0, then all Ai’s are positive. Furthermore, (12) implies that B0 >
 0 if R0 <  1. Moreover, it is revealed that the polynomial (10) has positive 

Hurwitz matrices. 

 That is, H1  =  B0 >  0 and H2  =  [B0 B1] >  0.  
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As a result, the disease-free equilibrium state is steadily stable locally, and 

every eigenvalue of the Jacobian equation matrix J(E0) has the negative real 

component when R0 <  1. But when R0 >  1, we observe that B0 <  1, and 

according to Descartes's rule of terms [34], the arrangement of the polynomial's 

coefficients,B1, B0, changes by exactly one sign. Therefore, the equilibrium 

point free from sickness will be unstable if only one positive eigenvalue exists. 

4.2. Disease endemic equilibrium 

Lemma 2: Regional stability states that native equilibria E* are stable when R₀ 

> 1. 

Proof: We compute the Jacobian matrix from the system of Equation (3) at E*, 

which results in 

J =

(

 
 

−(βhIv + μh) 0     γ                    0                 −βhSh
βhIv −(μh + δh + ω)     0                     0                    βhSh
0
0
0

ω
−βvSv
βvSv

−(γ + μh)
0
0

0
−(μv + βvIh)

βvIh

0
0

−(μv + δv))

 
 

 

The equation for J* (E*) features is defined as follows: 

|J∗( E∗)  −  λI|  =  0 

⟹
|
|

−(βhIv + μh) − λ 0   γ                             0                     −βhSh
βhIv −(μh + δh + ω) − λ   0                           0                       βhSh
0
0
0

ω
−βvSv
βvSv

−(γ + μh) − λ
0
0

  0
−(μv + βvIh) − λ

βvIh

0
0

−(μv + δv) − λ

|
|
= 0  

⇒ λ5  +  P1λ
4  +  P2λ

3  +  P3λ
2  +  P4λ + P5 =  0                                                 (13) 

where 

P1 = Ihβv + Ivβh +  2μv + δh +  3μh +  ω + δv +  γ     

P2 = IhIvβhβv − ShSvβhβv + Ihμvβv + Ihδhβv +  3Ihβvμh + Ihβvω+ Ihβvδv
+  2Ivμvβh + Ivβhδh +  2Ivβhμh + Ivβhω+ Ivβhδv +  γIhβv
+  γIvβh + μv

2 +  2μvδh +  6μvμh +  2μvω+ μvδv +  2δhμh
+ δhδv +  3μh

2 +  2μhω+  3μhδv +  ωδv +  2γμv +  γδh          
+  2γμh +  γω +  γδv 
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P3 = IhIvμvβhβv + IhIvβhδhβv +  2IhIvβhβvμh + IhIvβhβvω+ IhIvβhβvδv
− ShSvμvβhβv −  2ShSvβhβvμh +  γIhIvβhβv + Ihμvδhβv
+  3Ihμvβvμh + Ihμvβvω+  2Ihδhβvμh + Ihδhβvδv +  3Ihβvμh

2

+  2Ihβvμhω+  3Ihβvμhδv + Ihβvωδv + Ivμv
2βh +  2Ivμvβhδh

+  4Ivμvβhμh +  2Ivμvβhω+ Ivμvβhδv + Ivβhδhμh + Ivβhδhδv
+ Ivβhμh

2 + Ivβhμhω+  2Ivβhμhδv + Ivβhωδv − γShSvβhβv
+  γIhμvβv +  γIhδhβv +  2γIhβvμh +  γIhβvω+  γIhβvδv
+  2γIvμvβh +  γIvβhδh +  γIvβhμh +  γIvβhω+  γIvβhδv + μv

2δh
+  3μv

2μh + μv
2ω+  4μvδhμh + μvδhδv +  6μvμh

2 +  4μvμhω

+  3μvμhδv + μvωδv + δhμh
2 +  2δhμhδv + μh

3 + μh
2ω+  3μh

2δv
+  2μhωδv +  γμv

2 +  2γμvδh +  4γμvμh +  2γμvω+  γμvδv
+  γδhμh +  γδhδv +  γμh

2 +  γμhω+  2γμhδv +  γωδv 

P4 = IhIvμvβhδhβv +  2IhIvβhβvμhμv + IhIvμvβhβvω+ IhIvβhδhβvμh
+ IhIvβhδhβvδv + IhIvβhβvμh

2 + IhIvβhβvμhω
+  2IhIvβhβvμhδv + IhIvβhβvωδv −  2ShSvμvβhβvμh
− ShSvβhβvμh

2 +  γIhIvμvβhβv +  γIhIvβhδhβv
+  γIhIvβhβvμh +  γIhIvβhβvω+  γIhIvβhβvδv
+  2Ihμvδhβvμh +  3Ihμvβvμh

2 +  2Ihμvβvμhω+ Ihδhβvμh
2

+  2Ihδhβvμhδv + Ihβvμh
3 + Ihβvμh

2ω+  3Ihβvμh
2δv

+  2Ihβvμhωδv + Ivμv
2βhδh +  2Ivμv

2βhμh + Ivμv
2βhω

+  2Ivμvβhδhμh + Ivμvβhδhδv +  2Ivμvβhμh
2 +  2Ivμvβhμhω

+  2Ivμvβhμhδv + Ivμvβhωδv + Ivβhδhμhδv + Ivβhμh
2δv

+ Ivβhμhωδv −  γShSvμvβhβv −  γShSvβhβvμh
+  γIhμvδhβv +  2γIhμvβvμh +  γIhμvβvω+  γIhδhβvμh
+  γIhδhβvδv +  γIhβvμh

2 +   γIhβvμhω+  2γIhβvμhδv
+  γIhβvωδv +  γIvμv

2βh +  2γIvμvβhδh +  2γIvμvβhμh
+  2γIvμvβhω+  γIvμvβhδv +   γIvβhδhδv +   γIvβhμhδv
+  γIvβhωδv +  2μv

2δhμh +  3μv
2μh

2 +  2μv
2μhω+  2μvδhμh

2

+  2μvδhμhδv +  2μvμh
3 +  2μvμh

2ω+  3μvμh
2δv +  2μvμhωδv

+ δhμh
2δv + μh

3δv + μh
2ωδv +  γμv

2δh +  2γμv
2μh +  γμv

2ω
+  2γμvδhμh +  γμvδhδv +  2γμvμh

2 +  2γμvμhω
+  2γμvμhδv +  γμvωδv +  γδhμhδv +  γaμh

2δv +  γμhωδv 
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P5 = IhIvμvβhδhβvγ + IhIvμvβhδhβvμh  + IhIvμvβhβvγμh  + IhIvμvβhβvγω
+ IhIvμvβhβvμh

2  + IhIvμvβhβvμhω + IhIvβhδhβvγδv  
+ IhIvβhδhβvμhδv  + IhIvβhβvγμhδv  +  IhIvβhβvγωδv  
+  IhIvβhβvμh

2δv + IhIvβhβvμhωδv − ShSvμvβhβvγμh  
−  ShSvμvβhβvμh

2  + Ihμvδhβvγμh  + Ihμvδhβvμh
2  

+  Ihμvβvγμh
2  +  Ihμvβvγμhω + Ihμvβvμh

3  +  Ihμvβvμh
2ω 

+ Ihδhβvγμhδv  + Ihδhβvμh
2δv  +  Ihβvγμh

2δv  
+  Ihβvγμhωδv + Ihβvμh

3δv + Ihβvμh
2ωδv + Ivμv

2βhδhγ 
+ Ivμv

2βhδhμh  +  Ivμv
2βhγμh  + Ivμv

2βhγω + Ivμv
2βhμh

2  
+ Ivμv

2βhμhω + Ivμvβhδhγδv  +  Ivμvβhδhμhδv
+ Ivμvβhγμhδv  +  Ivμvβhγωδv  +  Ivμvβhμh

2δv
+ Ivμvβhμhωδv + μv

2δhγμh  +  μv
2δhμh

2  +  μv
2γμh

2  + μv
2γμhω

+ μv
2μh

3  + μv
2μh

2ω + μvδhγμhδv  + μvμh
2δv + μvγμh

2δv  
+  μvγμhωδv  + μvμh

3δv + μvμh
2ωδv + μv

2δh γμh  + μv
2 γμh

2  
+  μv

2 γμhω + μvδh γμhδv  + μv γμh
2δv + μv γμhωδv 

Based on the above relations, we can analyze as follows: 

P₁ > 0, P₂ > 0, P₃ > 0, P₄ >0 and P₅ > 0 if Sₕ, Sᵥ, Iₕ, Iᵥ > 0. From Equation (8), it 

is also clear that Sₕ, Sᵥ, Iₕ, and Iᵥ are favorable if R₀ > 1. The virus's endemic 

point of equilibrium E* is therefore stable locally for R₀ > 1 according to the 

Routh–Hurwitz stable criteria. 

5. Estimation of the model's parameters 

In this section, we use malaria incidence data collected by the National Malaria 

Control Program (NMCP) from 2010 to 2022 to estimate the model parameters. 

Table 1 presents parameter values used to fully parameterize the simulation of 

malaria transmission from mosquitoes to humans. The remaining parameters 

were determined using the least-square fitting method, which involves 

minimizing the error between the model (3) solution and the observed malaria 

incidence data from 2010 to 2022 (refer to Figure 2). The multi-start approach 

with 1000 points of departure was used to fit the model in the MATLAB 

computer language. The following objective function is employed in the 

parameter estimation: 

θ̂  =  argmin∑ (βhLh – datati)
2n

i=1                                                         (14) 

where datatI represents the model solution at the time tiand the malaria 

incidence data and n are the number of available data points. Table 1 tabulates 

the model’s associated parameters (3). 
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Fig. 2. Data on reported cases of malaria (red dot line) and the associated 

best fit (blue solid line). 

 

Table 1: Parameter values, signs, potential values, and citations are listed. 

Parameter description Signs Value Citations 

Human population in 2020 Nh 164689383  [36] 

Mosquito population Nv 19080000  [37] 

Human birth or death rates per capita μₕ 0.0095  Variable  

Mosquitos birth or death rates per 

capita 

μᵥ 0.0085  Variable 

The likelihood of infection in humans βₕ 0.0506 Fitted 

The likelihood of infection in 

mosquitos 

βᵥ 0.0506 Fitted 

Human progression rate from Iₕ to Rₕ ω 0.35  Variable 

Human mortality rate due to illness δₕ 0.095  Variable 

Mosquito mortality rate due to illness δᵥ 0.12  Variable 

Rate of deterioration of human 

immunity 

γ 0.45  Variable 
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6. Sensitive Analysis 

Sensitivity indices are computed to identify key parameters influencing malaria 

transmission. The results indicate that human-to-mosquito and mosquito-to-

human transmission rates, as well as immunity loss, have the most significant 

impact on R₀. This process helps devise effective management strategies and 

prevents inaccurate public health predictions. Additionally, sensitivity analysis 

highlights areas requiring further research to enhance the model's predictive 

accuracy. For disease transmission modeling, it serves as a valuable tool for 

developing control strategies and improving public health outcomes. In this 

section, using the parameter values from Table 2, we assess the sensitivity 

indices for the basic reproduction numbers (R₀ᵥ for mosquitoes and R₀ₕ for 

humans). By analyzing two factors influencing disease transmission, our study 

aims to determine whether the malaria epidemic will persist or eventually fade. 

The sensitivity index assesses the relationship between key parameters and 

disease transmission among susceptible individuals, thus helping in the 

development of policies to mitigate the spread of malaria. The mathematical 

expression below can be used to represent the sensitivity index of the basic 

reproduction number in relation to the involved parameters. 

Sβh =
∂Roh   

∂βh

βh

Roh
                                                                                                                              (15) 

The parameters involved in the calculation of the fundamental reproduction 

numbers R₀ₕ and R₀ᵥ are represented by 𝛽ᵢ in this case.   

Table 2. Sensitivity indices to the parameters for the model 

Parameter Sensitivity 

index (R₀ₕ) 

        Parameter Sensitivity index 

(R₀ᵥ) 

  βₕ 

δₕ 

ω 

μₕ 

+1 

-0.20902 

-0.77008 

-0.04599 

 

βv 

δv 

μv 

 

+1 

-0.93385 

-0.51477 
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Fig.3. Bar chart depicting the sensitivities indices of the model output o f  

basic reproduction number R0hwith respect to the estimated parameters  βₕ,

μₕ, ω, δh. 

 

 

Fig.4. Bar chart depicting the sensitivities indices of the model output of 

basic reproduction number R0vwith respect to the estimated parameters  

βv, μv, δh. 
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Figure 3 illustrates that the parameter βₕ has a vital part in increasing the 

infectious state of humans (Iₕ*), while the parameters μₕ, ω, and δₕ significantly 

contribute to reducing this state. Likewise, as illustrated in Figure 4, the 

parameter βᵥ is instrumental in the spread of the infectious state in mosquitoes 

(Iᵥ*). Conversely, parameters such as μᵥ and δᵥ help decrease the number of 

infectious states. 

 

7. Bifurcation Analysis 

Bifurcation analysis is conducted to examine how parameter variations affect 

disease stability. Forward bifurcations are observed, indicating that a reduction 

in transmission rates below a critical threshold ensures malaria eradication. 

The bifurcation analysis of the system described in Equations (3) is discussed 

both mathematically and graphically here. 

Theorem 7.1: The proposed model Equations (3) has forward bifurcation at 

βh  =  βh
∗  at R₀ = 1, whenever a < 0. 

Proof: Consider Sh = x1 and similarly, Ih = x2, Rh = x3, Sv = x4, Iv = x5. 

Then the system described in (3), can be written as 

dx1

dt
= f1 = μhNh + γx3 − βhx1x5 − μhx1

dIh

dt
= f2 = βhx1x5 − (ω + δh + μh)x2      

dRh

dt
= f3 = ωx2 − (γ + μh)x3                       

dSv

dt
= f4 = μvNv − βvx4x2 − μvx4              

dIv

dt
= f5 = βvx4x2 − (δv + μv)x5              

                                                                 (16) 

The bifurcation parameter is identified as the transmission rate among the 

susceptible population that has not been vaccinated, with the condition that R₀ 

= 1. Choose βh = βh
∗  as a bifurcation parameter. Solving for βh

∗  from R₀ = 1 

gives 

βh
∗ =

(δv + μv)(ω + δh + μh)

NhμhNvμvβv
 

So, the disease-free equilibrium points for the transformed system 

E0 = (x1
0, x2

0, x3
0, x4

0, x5
0) = (Nh, 0,0, Nv, 0) 

The Jacobian matrix of the system (16) evaluated at the disease-free equilibrium 

E0 with βh = βh
∗  is given by 
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J∗ =

(

 
 

−μh 0     γ            0      −βh
∗Nh

0 −(μh + δh +ω)     0            0          βh
∗Nh

0
0
0

ω
−βvNv
βvNv

−(γ + μh)
0
0

0
−μv
0

0
0

−(μv + δv))

 
 

 

The Jacobian J* of the linearized system has a simple zero eigenvalue with all 

other eigenvalues having negative real parts. In the scenario of R₀ = 1, using the 

technique [38], it can be shown that the matrix J* has a right eigenvector 

(corresponding to the zero eigenvalues), given by  w =  [w1w2w3w4w5]
T , 

where 

w1 = −
μh
2+μh(γ+δh+ω)+γδh

ωμh
w3, w3 = w3 > 0, w2 =

(γ+μh)

ω
w3, w4 =

−
βvNv(γ+μh)

μvω
w3, and w5 =

(μh+δh+ω)(γ+μh)

ωβhNh
w3. 

Similarly, the components of the left eigenvector of J* (corresponding to the 

zero eigenvalue), denoted by v = [v1v2v3v4v5]
T, are given by 

v1 = v3 = v4 = 0, v2 = v2 > 0 and v5 =
βh
∗Nh

(μv+δv)
v2. 

So, the bifurcation coefficients a and b are  

a = ∑ vlwmwn
∂2fl

∂xm ∂xn

5
m,n,l=1   

= −
βvNv(μh+δh+ω)(γ+μh)

2

μhNhμv
2ω2

[
μv
2Nvβh{μh(μh+δh+ω)+γ(γ+μh)}

(μh+δh+ω)(γ+μh)(μv+δv)
+ R0

2]  

 and b = ∑ vkwi
∂2fk

∂xi ∂β

5
i,k=1 = βh

∗v2w5 > 0. 

After computing the partial derivative of the modified function (), inserting the 

associated rate values for the parameters, and substituting the appropriate values 

of w = (w₁, w₂, w₃, w₄, w₅) and v = (v₁, v₂, v₃, v₄, v₅), we notice the forward 

bifurcation at R₀ = 1. When R₀ >1, the forward bifurcation situation has an 

unstable disease-free equilibrium and a stable disease-endemic equilibrium 

point (see Figure 5). The bifurcation parameter is identified as the transmission 

rate among the susceptible population, with the condition that R₀ = 1. 
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Fig. 5. A bifurcation graphic that illustrates how the stability of R₀ improves as 

R₀ goes from 0 to 2. 

Bifurcation analysis explores how the system's behavior changes with variations 

in the basic reproduction number R₀. Our malaria model helps identify the point 

at which the system transitions from an endemic state to a disease-free state. 

When R₀ < 1, the system is in a stable disease-free equilibrium, meaning malaria 

will eventually disappear. Conversely, when R₀ exceeds 1, the system reaches 

an endemic equilibrium, where the disease persists. This analysis highlights the 

importance of keeping R₀ below 1 for malaria eradication, as values above 1 

lead to continuous transmission. 

Theorem 7.2: Consider the malaria transmission model described by the system 

(16), where R0 is the basic reproduction number and βv is the mosquito-to-

human transmission rate. At the critical value βv  = βv
∗ , corresponding to R0 =

1, the disease-free equilibrium (DFE) undergoes a bifurcation. 

If the bifurcation coefficients a < 0 and b > 0, the following conclusions can 

be drawn: 

1. For R0 < 1, the DFE is locally asymptotically stable, and no endemic 

equilibrium exists. 

2. For R0 > 1, the DFE becomes unstable, and a unique stable endemic 

equilibrium emerges. 

This behavior indicates that the system exhibits a forward bifurcation, where 

the stability of the DFE changes at R0 = 1, and the endemic equilibrium 

smoothly branches off as R0 increases beyond 1. 

Proof: Given R0 = 1, solve for the critical value of βv  = βv
∗  in terms of the 

model parameters: 



ISSN:0265-086X Vol. 43 (n. 5, 2025) 

216

 

βv
∗ =

(δv + μv)(ω + δh + μh)

NhμhNvμvβv
 

The Jacobian matrix J∗ of the system evaluated at E0 with βv = βv
∗  is: 

J∗ =

(

 
 

−μh 0     γ             0      −βhNh
0 −(μh + δh +ω)    0             0         βhNh
0
0
0

ω
−βv

∗Nv
βv
∗Nv

−(γ + μh)
0
0

 0
−μv
 0

0
0

−(μv + δv))

 
 

 

This matrix has a simple zero eigenvalue, with all other eigenvalues having 

negative real parts at R0 = 1. 

Using the Castillo-Chavez and Song methodology, compute the eigenvectors 

associated with the zero eigenvalue. 

Right eigenvector w =  [w1, w2, w3, w4, w5]
T: 

w1 = −
μh
2+μh(γ+δh+ω)+γδh

ωμh
w3, w3 = w3 > 0, w2 =

(γ+μh)

ω
w3, 

w4 = −
βv
∗Nv(γ+μh)

μvω
w3, and w5 =

(μh+δh+ω)(γ+μh)

ωβhNh
w3. 

Left eigenvector v =  [v1, v2, v3, v4, v5]
T: 

v1 = v3 = v4 = 0, v2 = v2 > 0 and v5 =
βhNh

(μv+δv)
v2. 

The coefficient a is given by 

a = ∑ vlwmwn
∂2fl

∂xm ∂xn

5
m,n,l=1   

After substituting expressions for v, w, and second derivatives of 𝑓𝑙, we find: 

a = −
βh(μv + δv)(μh + δh +ω)(γ + μh)

2

μhNhμv
2ω2

[
μv
2Nvβv

∗(μh + δh + ω) + γ(γ + μh)

(μh + δh + ω)(γ + μh)(μv + δv)
+ R0

2]. 

Since a < 0, the bifurcation is forward. 

The coefficient b is given by: 

b = ∑ vkwi
∂2fk
∂xi ∂β

5

i,k=1
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After substituting the appropriate terms: 

b = βv
∗v2w5 > 0 

 

8. Numerical Simulations 

This section presents the application of the proposed model, using specified 

initial conditions, to perform numerical simulations and visualize the dynamics 

of disease transmission. The simulation aims to support decision-making and 

investigate how various control strategies can mitigate the transmission of 

infectious diseases, specifically malaria, in Bangladesh. We perform a 

comprehensive numerical analysis using the ODE45 solver in MATLAB, which 

validates the analytical findings and assesses the effects of key factors such as 

immunity loss, human infection rate, recovery rate, and disease-induced 

mortality on malaria incidence. We used various initial conditions for each 

population to evaluate the stability of the model's equilibrium points. The model 

suggests that malaria will gradually disappear from the population if the basic 

reproduction number, R₀, is less than 1. However, if R₀ is greater than 1, malaria 

will persist in the population. We compared the human-infected population with 

the mosquito-infected population by applying several initial conditions to the 

system. The parameter values used in the numerical simulations were taken 

from Table 1. These methods allow us to solve the model and obtain the desired 

results. 

 

Fig. 6. Relationship between infected Mosquito population vs Human 

population when R0 < 1. 
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Fig. 7. Relationship between infected Mosquito population vs Human 

population when R0 >1. 

 

The trajectories of the model, using various initial values for all 

compartmental variables, are depicted in Figures 6 and 7, which illustrate 

the transmission patterns for both the disease-free and endemic equilibria. 

In Figure 6, the disease transmission gradually declines to zero, as the 

trajectories converge to the disease-free equilibrium point, signifying that 

the disease will fade out from the population when R0 <  1. In contrast, 

Figure 7 highlights the progression of the disease under endemic conditions 

for R0 >  1. The trajectories stabilize at positive values for both infected 

human and mosquito populations, demonstrating the persistence of the 

disease within the population. This figure shows how, in the context of a 

high transmission rate, the infectious agent spreads and stabilizes, 

maintaining endemicity over time. This study presents malaria incidence 

alongside various rate factors and the basic reproduction number (R0). In, 

prevalence refers to the proportion of individuals in the population who are 

infected at a given time. Monitoring this prevalence is crucial for tracking 

the spread of the disease and informing public health strategies aimed at 

controlling and preventing further transmission. 

 



ISSN:0265-086X Vol. 43 (n. 5, 2025) 

219

 

 

Fig. 8. The behaviour of infected humans for the different values of 

transmission rate (βh) when R₀ >1. 

 

Fig. 9. The behaviour of infected humans for the different values of 

disease-related death rate(δh) when R₀ > 1. 
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Fig. 10. The behavior of infected humans for the different values of 

recovery rate (ω) when R₀ > 1. 

 

 

Fig. 11. The behaviour of infected humans for the different values of loss 

of immunity(𝛾) when R₀ > 1. 
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Figures 8–11 illustrate the system's behavior under various model parameter 

values. By keeping the other parameters from Table 1 constant and ensuring 

that the basic reproduction number is greater than one, Figures 8 and 9 

demonstrate how changes in the transmission rate and disease-related mortality 

rate impact the infected population. Specifically, Figure 8 indicates that an 

increase in the transmission rate (βh) is associated with a higher prevalence of 

malaria. In contrast, Figure 9 shows that an increase in the disease-related 

mortality rate (δh)  reduces overall malaria prevalence. This study highlights 

the importance of managing the rate of disease spread to effectively implement 

various intervention strategies, including public awareness campaigns, 

diagnostic initiatives, and health education programs. Figures 10 and 11 

illustrate the effects of the recovery rate (ω) and loss of immunity (𝛾) on the 

human population. The computational models presented in Fig. 10 indicate that 

an increase in the recovery rate (ω) leads to a decrease in infected individuals.  

Conversely, Figure 11 shows that a decline in the immunity rate (𝛾) increases 

the infected population. Implementing intervention strategies, such as timely 

medical treatment, transfeminine-based combination therapy, and measures to 

prevent chronic infections, is expected to reduce human infections and enhance 

recovery rates. Therefore, lowering the transmission rate is essential for 

executing different intervention strategies, including public awareness 

campaigns, diagnostic programs, and health education initiatives. 

 

9. Discussion and Conclusion 

Malaria is a severe global health threat, with millions affected worldwide, 

particularly in low- and middle-income regions such as sub-Saharan Africa and 

parts of South Asia. Despite global efforts for control and elimination, malaria 

remains a leading cause of morbidity and mortality, placing a considerable 

burden on healthcare systems and affecting economic growth. Vulnerable 

groups, including young children and pregnant women, are disproportionately 

impacted. Understanding malaria transmission dynamics is critical to 

developing effective strategies for reducing its global burden, as this disease 

continues to hinder socio-economic progress in affected regions. 

Malaria significantly impacts health, education, and economic development in 

endemic areas. The disease's burden extends beyond immediate health effects, 

as recurrent infections impede cognitive development in children, limit 

educational attainment, and reduce workforce productivity, leading to 

substantial economic costs for families and communities. Malaria also 

overwhelms healthcare facilities, especially in rural regions with limited 

resources, further emphasizing the need for effective control strategies to break 

the cycle of poverty and illness in affected populations. 

In Bangladesh, malaria remains a prominent public health issue, particularly in 

hilly and border areas like the Chattogram Hill Tracts, Sylhet, and Mymensingh. 

These regions, characterized by dense forests and conducive environmental 



ISSN:0265-086X Vol. 43 (n. 5, 2025) 

222

 

conditions, are highly susceptible to transmission. Limited healthcare access in 

these marginalized communities exacerbates malaria's effects, increasing 

mortality and complicating efforts to control outbreaks. Cross-border 

population movement and regional ecological factors further challenge 

containment efforts, underscoring the importance of a coordinated, region-

specific approach to malaria control in Bangladesh. 

In this study, we developed and analyzed a compartmental model to represent 

the non-linear dynamics of malaria transmission between humans and 

mosquitoes. The proposed model categorizes humans into susceptible, 

infectious, and recovered groups, while mosquitoes are classified as susceptible 

or infectious, as they remain infected for life. By incorporating non-linear forces 

of infection with saturated incidence rates, model results differed from 

traditional models, which typically employed standard incidence rates or basic 

mass-action approaches. The results of the model were validated both 

epidemiologically and mathematically for a specific region, with a disease-free 

equilibrium point identified. 

Our findings underscore the critical role of the basic reproduction number (R0) 

in determining malaria dynamics, consistent with previous studies [1, 2]. 

Similar to the work of Gebremeskel et al. (2023) [41], our bifurcation analysis 

highlights the importance of maintaining  R0   <  1  to achieve malaria 

eradication. Moreover, the sensitivity analysis confirms that targeted 

interventions, such as those outlined by Asamoah et al. (2022) [42], can 

significantly reduce transmission rates and disease prevalence. These results 

reinforce the value of mathematical modeling in guiding public health strategies 

and contribute to the growing body of research emphasizing the interplay 

between transmission dynamics and control measures in endemic regions. 

Our model aims to encourage future researchers to explore natural treatments 

for reducing malaria transmission, devise strategies for local and national 

malaria control, and enhance public awareness of prevention methods. Public 

health education and social media campaigns can play a critical role in fostering 

effective community engagement to combat malaria. Furthermore, policy 

options addressing environmental and socioeconomic factors could contribute 

to more sustainable solutions for malaria control and elimination in Bangladesh 

and comparable regions. 
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