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ABSTRACT 

Cervical cancer, a leading cause of female mortality globally, results from abnormal cell growth in the cervix, 

making early detection crucial. This study suggests an automated segmentation approach that is more accurate 

and faster than traditional methods, which face challenges such as contrast problems and noise. The research aims 

to develop an algorithm for autonomously segmenting the nucleus of cervical cells to aid in diagnosis and future 

research. The proposed methodology involves extracting and enhancing the brightness (V channel) of input 

images using a median filter and Pairing Adaptive Gamma Correction and Histogram Equalisation (PAGCHE). A 

segmentation method based on multiple Fuzzy C-Means Clustering (FCM) layers and flexible morphological 

approaches is used to segment the nuclei in Pap smear images. The study utilized 917 images from the Herlev 

dataset to evaluate the method's performance. Image Quality Assessment (IQA) metrics, including accuracy, 

sensitivity, precision, specificity, and F-measure, demonstrate the method's efficacy. Results show the proposed 

approach consistently achieves over 90% accuracy. It outperforms other methods like Chan-Vese (CV), Canny 

edge-based, adaptive threshold, and FCM, with the highest accuracy, F1-measure, and sensitivity at 92.19%, 

94.40%, and 93.38%, respectively. It also ranks second in precision and specificity, at 96.41% and 94.25%. These 

results indicate the approach's high accuracy, sensitivity, and specificity, making it a reliable tool for early 

detection and diagnosis. The algorithm's successful implementation could improve patient outcomes and support 

further research in cervical cancer diagnostics. The average segmentation score of the 917 images exceeds 90%, 

highlighting the method's flexibility. 

Keywords: cervical cell; contrast enhancement; image segmentation; nucleus; pap smear. 
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INTRODUCTION 

In the cells of the cervix, cervical cancer originates from the lower portion of the uterus 

that is anatomically connected to the vagina. It occurs when the cervix cells increase 

abnormally, as stated by Sausen et al. (Guimarães et al., 2022; Sausen et al., 2023) An estimated 

604,000 new cases of cervical cancer and 342,000 deaths occurred globally in 2020, according 

to Sausen et al. and H. Sung et al. in their papers (Sausen et al., 2023; Sung et al., 2021). 

Cervical cancer is a common form of the disease that likely every woman will eventually 

develop; furthermore, it is associated with a high mortality rate, as stated by Mustafa et al. 

(Mustafa et al., 2021; Mustafa, Halim, & Ab Rahman, 2020). Based on the paper by the same 

author (Mustafa, Halim, Jamlos, et al., 2020), the Papanicolaou test developed during the 1940s 

is also known as the Pap test or Pap smear, which enables microscopic analysis of these cells 

to detect precancerous or cancerous caries. The traditional method of cervical cancer screening 

is based on the Pap smear test. However, Macios et al. and Schiffman et al. stated in their 

studies (Macios & Nowakowski, 2022) and (Schiffman & de Sanjose, 2019) that this method 

has several limitations, including low sensitivity and specificity, which can lead to false-

negative or false-positive results. 

Cell segmentation has become an essential stage in defining the progression of cervical 

cancer. Mustafa et al., in their paper (Mustafa et al., 2021), stated that this resulted in the 

widespread use of computer-aided detection technologies in cervical cancer screening. 

Traditional manual therapies help to address the difficulty caused by a lack of medical 

resources. Although technological advancements significantly boost the early detection of 

cervical cancer, Alias et al. emphasised in their paper (Alias et al., 2022) that correct diagnosis 

remains problematic for a variety of reasons. Segmenting nuclei in cervical cytology pap smear 

images is essential in automated cervical cancer screening. Wan et al. noted in their paper (Wan 

et al., 2019) that cervical cells with false edges, overlapping cells, neutrophils, and artefacts 

make segmentation more challenging. Nonetheless, the complex technique appears incapable 

of automatic diagnosis due to the relatively low segmentation accuracy for aberrant cells. 

Artificial intelligence is gaining popularity in computer-aided diagnosis due to the capacity of 

various deep learning approaches to automatically extract visual attributes with high accuracy 

and low error (Fujita, 2020). This breakthrough has been widely used in multiple studies to 
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segment cell pictures. This study intends to contribute to a more effective nucleus identification 

approach. 

There are many cell or nuclei image segmentation methods, which can be generally divided 

into several categories. First, cell or nucleus segmentation methods adopt region information 

to classify each pixel in an image (M. Zhao et al., 2021). Typical nucleus segmentation methods 

include threshold methods (Hameed et al., 2015; Madhloom et al., 2010; Mayala & Haugsøen, 

2022; Yang et al., 2014), region growing (Arya et al., 2020; Nahrawi et al., 2021; Shilpa et al., 

2021), clustering (Arya et al., 2020; Bandyopadhyay & Nasipuri, 2020; Haridas & Jayamalar, 

2023) and watershed algorithm  

Second, segmentation methods using cell or nucleus edge information utilise the 

discontinuity of grey information to segment the image; they mainly include differential 

operator methods and active contour models (Alias et al., 2022; Mustafa et al., 2021; M. Zhao 

et al., 2021). 

Third, cell or nucleus segmentation methods are mainly based on related theories such as 

wavelet analysis (Imtiaz et al., 2023; Wu et al., 2021), mathematical morphology (Nahrawi et 

al., 2021; Plissiti et al., 2011) genetic algorithm (Li et al., 2010) and neural networks (Prasad 

Battula & Chandana, 2022). In addition, many state-of-the-art cell or nuclei segmentation 

algorithms are no longer based on a single algorithm but multiple algorithms together, namely, 

fusion algorithms, which aim to make up for the shortage of a single algorithm and achieve 

better segmentation results (Glotsos et al., 2018; Huang & Zhu, 2020)  

Rajarao and Singh employed a Hybrid dual-stage active contour method in the Construction 

of an Improved Normalized Graph Cut using an Image unfolding process (Rajarao & Singh, 

2020). Nevertheless, Plissiti et al. proposed a new segmentation approach based on the 

variability of intensity among superpixels (Plissiti et al., 2011). Jinjie Huang proposed a multi-

scale fuzzy clustering algorithm to exclude nuclei, and they obtained high accuracy (William 

et al., 2019). Meanwhile, Meng Zhao et al. exploited the new Selective-Edge-Enhancement-

based Nuclei Segmentation method. This method automatically segments the cervical image 

into small regions after considering the image pre-processing operation techniques (M. Zhao 

et al., 2021). On the other hand, many researchers exploited the benefits of deep learning to 
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segment the nuclei automatically, such as Alquran et al., who segmented the cervical images 

into nuclei and cytoplasm by employing a transfer learning method. They achieved higher 

accuracy for the nucleus region, reaching 92.0%. Jie Zhao et al. proposed a new method for 

segmenting nuclei accurately. Their method depends on using the Deformable Multipath 

Ensemble Model (DMMM). Their results were expressed similarly, reaching 93.3% (J. Zhao 

et al., 2019). 

Deep learning has emerged as a promising solution for improving diagnostic accuracy, with 

various studies demonstrating its ability to automatically extract visual features with high 

precision and low error rates. However, deep learning-based segmentation methods come with 

significant challenges—they require high computational power, large training datasets, and are 

often ineffective when dealing with low-quality images. These limitations are particularly 

problematic in cervical cancer screening, where datasets are often small and image quality 

varies significantly. 

Accurate cervical cell nucleus segmentation is crucial for early cervical cancer diagnosis, 

yet existing methods struggle with three major challenges: 

1. Deep learning techniques require extensive processing power and resources, making 

them impractical for certain medical applications. 

2. Supervised learning methods rely on large amounts of labelled data, which are often 

unavailable for cervical cytology. 

3. Variability in cytology images leads to segmentation errors, reducing the reliability of 

automated methods. 

To address these challenges, this study introduces a novel segmentation approach 

leveraging a multilayer Fuzzy C-Means algorithm, integrating clustering, region properties, 

and morphological techniques. Unlike deep learning-based methods, this approach is 

computationally efficient, does not require large training datasets, and remains effective despite 

low-quality images. Hence, the contributions of this study are as follows: 

1. This study introduces a novel approach by integrating a fusion of clustering algorithms, 

region properties, and a morphological approach for segmentation. To the best of our 
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knowledge, this is the first study to combine all these methods, aiming to enhance the 

accuracy and efficiency of cervical cell nucleus segmentation. 

2. This study proposed multilayer selection algorithm which only require low 

computational compared to deep learning techniques. This attribute makes it 

particularly suitable for cervical datasets, which often have limited available data and 

resources, thus eliminating the need for an extensive training dataset. Consequently, 

this method ensures a more accessible and efficient diagnostic tool for cervical cancer 

screening. 

 

MATERIALS AND METHODS 

This section explained the proposed methodology for segmenting nuclei from Pap smear 

images. The sample images should consist of a single cervical cell, all colour images. This 

process was performed using the Matlab R2021b software. The framework involved image 

acquisition, pre-processing and segmentation. The main idea of the proposed method is based 

on the combination of Fuzzy C-Means Clustering (FCM) and several mathematical 

morphologies for segmenting the nucleus in the Pap smear images. 

Image Acquisition 

The 917 sample images were collected from the Herlev database (Herlev University 

Hospital, Denmark). The database was obtained from/developed by NiSIS (EU coordination 

action, contract 13569), Nature-inspired Smart Information Systems, with particular 

significance for the Nature-Inspired Data Technology focus group. It is thus accessible 

(http://fuzzy.iau.dtu.dk/download /smear2005) on the World Wide Web. The sample images 

shown in Figure 1 below display the sample images of each class. 
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Figure 1: Sample Images of Herlev dataset. 

Pre-Processing 

This study proposed two steps: denoise and colour contrast enhancement. The input 

images were converted to the colour space of the HSV system. HSV is one of the easy-to-use 

systems to identify colours and illumination and is closest to how humans perceive and 

compare colours. Extracted V channel will be applied with the median filter with 15×15 

windowing size to remove salt and pepper noise. As there will be a problem with the contrast 

after using a median filter in the image, therefore a novel Pairing Adaptive Gamma Correction 

and Histogram Equalization (PACGHE) proposed by Bataineh (Bataineh, 2023) was used to 

improve the colour contrast of pixels in the image. Referring to Figure 2, gamma and histogram 

will be extracted from the V channel of the input images. An adaptive gamma generator 

calculates gamma parameters (γ') based on the image's dark, medium, or bright conditions 

using the following proposed equation: 

𝛾ᇱ =  
ெ

×.ଷଷ
+ 𝐶              (1) 

Where L is the maximum grey level of the images, here, L = 255, and it is multiplied by 0.33 

to adapt the 𝛾ᇱ value to one of the three global states, which are dark, medium or bright, for the 

images. C is a bias constant to overcome the problem of 𝛾ᇱ ; here, C = 0.1. The computed 

gamma parameters propose a cumulative distribution function (CDF) that optimises the 

illumination values. Next, A significant modification of histogram equalisation (HE) is 

performed to improve image contrast and prepare the illumination for subsequent stages. A 
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proposed CDF function is used to enhance the illumination greatly. This function aims to 

improve the illumination and contrast adaptively to unify the visual properties of any image, 

ranging from considerably light to dark. New values of the brightness matrix are calculated 

using the processed cdf value as the following equation: 

𝑉ெூ(𝑥, 𝑦) = 𝑐𝑑𝑓′(𝑉(𝑥, 𝑦)) × 255          (2) 

After calculating the 𝑉ெூ  matrix, a second equalisation process is applied to modify the 

displacement of values evenly. Instead of using a standard pdf, an equal density probability is 

used here. The distribution of displaced values in the,𝑉-𝑀𝐼𝐷 matrix is corrected by rearranging 

equally to correct the illumination levels and contrast of the processed images. The result is a 

processed brightness matrix with improved contrast and illumination properties for the original 

V channel. 

 

Figure 2: Flowchart of PAGCHE (Bataineh, 2023). 

 

Post-Processing 

The nucleus image needs to be segmented after pre-processing. Figure 3 shows the 

flowchart for the overall process of the segmentation method. The process begins with an input 

image, which is first converted into the HSV (Hue, Saturation, Value) color space. The H, S, 

and V channels are separated, and the V channel undergoes pre-processing, resulting in a 

modified V' channel. This processed V' channel is then recombined with the H and S channels 

and converted back into the RGB color space. Next, the image is transformed into grayscale. 
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Figure 3: Overall Flowchart of Proposed Segmentation 
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The core segmentation method employs a multilayer approach combining Fuzzy C-

Means clustering, region properties filtering based on circularity, and selected morphological 

operations. This includes several steps: Fuzzy C-Means segmentation, small area removal, 

erosion to eliminate noise, hole filling in the segmented regions, region properties filtering 

based on circularity (initially set to 0.7, and if segmentation fails, the circularity index is 

reduced by 0.2 and the process repeats until the circularity index becomes zero), morphological 

opening to smooth the image, and dilation to enhance the segmented regions. Fuzzy C-Means 

(FCM) clustering algorithm is employed by start to partition the Pap smear image into clusters, 

with k set to 5, fuzziness parameter, p to default value of 2 and threshold criteria, ε, set to 

default value of 0.01 as shown in Table 1. ε refers to a value used to determine when the FCM 

algorithm should stop iterating. The value of k is based on five regions: nucleus, cytoplasm, 

white background, light noise, and dark noise. 

Table 1: Selected Original Images 

Parameter Value 

Fuzziness parameter, p 2 

Cluster Number, k 5 

Threshold criteria, ε 0.01 

 

Following the segmentation, circularity is checked using region properties filtering with 

an initial value of 0.2. The process includes a decision point to determine if any segmentation 

was detected. If segmentation fails, further steps are performed, such as adjusting circularity to 

0.7 and reapplying the segmentation techniques until successful. This iterative process, often 

referred to as a multilayer fuzzy C-Means on selected images, ensures thorough segmentation 

of the input image, leveraging various techniques to refine the final output. 
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The core segmentation method employs a multilayer approach that integrates Fuzzy C-

Means (FCM) clustering, geometric property filtering based on circularity, and advanced 

morphological operations to achieve accurate segmentation. The methodology consists of the 

following steps: FCM segmentation, small area removal, erosion to eliminate noise, hole filling 

to ensure region continuity, region properties filtering based on circularity, morphological 

opening for smoothing, and dilation to enhance the segmented regions. 

The FCM clustering algorithm is initially employed to partition the Pap smear image 

into 5 clusters(k), representing five distinct regions: nucleus, cytoplasm, white background, 

light noise, and dark noise. The fuzziness parameter (p) is set to the default value of p=2, while 

the threshold criteria (ε) is set to 0.01. The clustering is governed by the minimization of the 

objective function: 

𝐽 = ∑ ∑ 𝑢
ฮ𝑥 − 𝑐ฮ

ଶ
ୀଵ

ே
ୀଵ                     (3) 

 Where 𝑢  is the degree of membership of data point 𝑥  in cluster 𝑗 , 𝑚  is the 

fuzziness exponent controlling the degree of cluster overlap. 𝑐 is the center of cluster 𝑗 and 

ฮ𝑥 − 𝑐ฮ denotes the Euclidean distance between 𝑥 and 𝑐. The algorithm iterates until the 

change in cluster centers falls below ε. 

Following the segmentation, geometric properties are used to filter regions based on 

circularity. The circularity (C) is calculated as: 

𝐶 =  
ସగ∙

మ                                (4) 

where A is the area and p is the perimeter of a region. Initially, Threshold C is set to 0.7. 

If segmentation fails to detect regions, the circularity threshold is reduced by 0.2 iteratively 

until it reaches zero. This adaptive adjustment ensures regions of varying geometries are 

considered. Several morphological operations are applied to refine the segmented regions: 

1. Small Area Removal: Regions with areas below a specified threshold are removed to 

eliminate noise. 

2. Erosion: Morphological erosion is performed to remove spurious pixels along 

boundaries, defined as:  
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𝐴 ⊖ 𝐵 =  {𝑧 ∈ 𝐸 | (𝐵)௭ ⊆  𝐴}              (5) 

where A is the image, B is the structuring element, and ⊖ denotes erosion. 

3. Hole Filling: Any holes within segmented regions are filled using connected component 

labeling to ensure continuity. 

4. Morphological Opening: Applied to smooth regions and remove small artifacts, defined 

as: 

𝐴∘𝐵= (A⊖B)⊕B              (6) 

where ∘ denotes opening, ⊖ is erosion, and ⊕ is dilation 

5. Dilation: Finally, dilation is used to enhance the segmented regions, making them more 

distinct, defined as: 

𝐴 ⊕ 𝐵 =  {𝑧 ∈ 𝐸 | (𝐵)௭ ∩ 𝐴 ≠ 0 }             (7) 

 

RESULTS AND DISCUSSION 

This section employs two types of analysis, visual and quantitative, to assess the 

approaches. In visual testing, the subjective perception of human eyesight is used to quantify 

image quality. Humans have a decent understanding of image quality because these 

investigations are limited to evaluating image quality visually. They are applied to images from 

the previously described data sets. Table 2 features the selection of seven cases for each class 

image. The first column depicts the original image before applying any of the methods. The 

second column shows the ground truth of the segmentation image. After using four different 

segmentation methods, the second to fifth columns are the resulting images. The segmentation 

process is repeated to 917 image datasets from all the classes. The average of the results will 

be discussed in the quantitative analysis. 
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Table 2: Selected Original Images 

ORIGINAL ADAPTIVE 

THRESHOLD 

CANNY 

EDGE BASED 

CHAN-VESE FUZZY C-

MEAN 

PROPOSED GROUND 

TRUTH 

      

       

       

       

       

       

       

 

The results reveal that all selected images are visually segmented differently depending on 

the approaches implemented. The result of the segmentation method can be observed in Table 

2. In choosing the best method, the method must be able to differentiate the nucleus and the 

cytoplasm; it also has to be immune to noise. Next, an exemplary method must segment the 

images with low contrast or low-light features. The proposed methods were applied to 917 

images from all classes. Table 2 shows the result of images from each class and compares four 

different methods: adaptive thresholding, Canny edge-based, Chan-Vese (CV), and FCM 
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segmentation. Based on the result, adaptive thresholding and Canny edge-based segmentation 

are very sensitive to the noise for all images, resulting in the noise being included as an object 

after segmentation. On the other hand, CV and FCM are able to segment the object definitively 

and better in preventing noise segmentation compared to adaptive thresholding and Canny 

edge-based. However, by comparing to the ground truth, both methods cannot accurately 

segment the object of interest. For example, the CV method is unable to segment the nucleus 

entirely due to the contrast sensitivity. At the same time, this method is also unable to segment 

any object at all, as observed in the first image; next, by referring to the sixth image, CV and 

adaptive thresholding are unable to segment the nucleus of interest from the cytoplasm, 

resulting the segmentation of cytoplasm as an object. Canny edge-based, and FCM 

segmentation is able to segment the nuclei. However, the method also included another nucleus 

due to the contrast sensitivity. As observed, the proposed method is able to differentiate 

between the nucleus and cytoplasm; secondly, it is immune to noise presence; and lastly, it is 

able to select the nucleus of interest to be segmented while immune to the presence of the other 

nucleus and debris with similar intensity of pixels. From Table 2, it can be shortly concluded 

that the proposed method is able to differentiate and segment the nucleus better compared to 

the other traditional segmentation methods. 

An analysis of image quality assessment (IQA) will evaluate the segmented image. Image 

Quality Assessment (IQA) is a process to determine the value of accuracy, sensitivity, 

specificity, f-measure and precision. The IQA can be used to monitor the image quality of the 

segmented image. IQA involves some calculations to obtain the value of the accuracy 

sensitivity, specificity, f-measure, and precision. The calculation consists of true positive pixels 

(TP), false positive pixels (FP), false negative pixels (FN), and true negative pixels (TN). 

Below are the mathematical formulae for accuracy, sensitivity, specificity, f-measure and 

precision: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ ்ା∑ ்ே

∑ ்ା∑ ்ேା∑ ிା∑ ிே
× 100         (8) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
∑ ்

∑ ்ା∑ ிே
× 100          (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ ்

∑ ்ା∑ ி
× 100                             (10) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
∑ ்ே

∑ ்ேା∑ ி
× 100                  (11) 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
ଶ∙∑ ்

ଶ∙∑ ்ା∑ ிା∑ ிே
× 100                  (12) 

 

Each measurement parameter result defines a specific meaning, and it is important to 

correlate all of the results without interpreting each result individually, as the analysis will be 

less meaningful. For example, a high percentage of sensitivity means the method was able to 

segment the object successfully (TP) but neglected the falsely segmented pixel (FP), as shown 

in the equation (Eq. 9), while precision (Eq. 10) only focused on positive segmented neglecting 

the negative segmented pixel. Accuracy (Eq. 8) defining overall pixel, however, in this study, 

might suggest that the accuracy will always be high as the nucleus, which is the object of 

interest, is small and the background, which is easier to segment, will always be dominant. 

 Quantitative analysis was conducted after applying segmentation methods to the 

original images. Table 3 shows the results of the evaluation using five methods: adaptive 

thresholding, Canny edge-based, Chan-Vese, FCM, and the proposed methods. The data on 

accuracy, sensitivity, precision, specificity, and F1-measure for the five methods were collected 

and recorded. The study found that the proposed method has the highest accuracy of 92.19% 

of the other four methods, which is 90.33% for the FCM method, 66.42% for the adaptive 

thresholding method, 64.92% for the CV method, and the lowest of 60.35% for the Canny 

edge-based method. Next, the proposed method yields the highest average sensitivity value of 

93.38%, which is closely followed by the FCM method at 93.34%, the CV method at 77.88%, 

the adaptive thresholding method at 61.32%, and the Canny edge-based method at the lowest, 

at 58.37%. The adaptive thresholding method also has the highest average precision value of 

98.37%. On the other hand, the other four methods managed to obtain average precision values 

of 96.41% for the proposed method, 93.70% for the Canny edge-based method, 93.93% using 

the FCM, and 85.19% for the CV method. The adaptive thresholding method yields the highest 

specificity average of 97.60%. The proposed method comes in second with 94.25%, followed 

by the Canny edge-based method with 85.53%, the FCM method with 86.24%, and the CV 

method with the lowest specificity average of 62.73%. The proposed method yielded the 

highest average value of 94.40% for the F1-measure, followed by the FCM method at 93.22%, 
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the CV method at 76.22%, the adaptive thresholding method at 74.09%, and the Canny edge-

based method at 69.41%. 

Table 3: Comparison Segment Image between Five Methods 

 

 

The results show that the proposed method outperformed the other four methods in 

accuracy. Adaptive thresholding has the highest precision and specificity scores, with over 

95%. However, the method's sensitivity is very low, less than 70%, this suggests it is 

conservative in predicting nuclei pixels, so misses a lot of true nuclei, but the ones it does 

predict are likely to be correct. Fuzzy C-Means has good performance, close to the proposed 

method. However, the proposed method edges it out in all metrics. Canny edge detection has 

high precision but poor accuracy and sensitivity with lower than 65%. As an edge detector, it 

is likely marking nucleus boundaries but unable to get full nuclei regions. Overall, the proposed 

method produced scores greater than 90%, with the highest accuracy, sensitivity, and F1-

measure score. Finally, by analyzing the relationship between qualitative and quantitative 

analysis, CV, FCM, and proposed methods can solve the problem of noise based on the impact 

on the standard deviation value by using a range of grey level values in the images may cause 

the high value of sensitivity compared to adaptive thresholding and FCM segmentation. 

However, the CV method could not distinguish between the cytoplasm and the nucleus due to 

a slight difference in contrast in the grey-level image cause the lowest accuracy and sensitivity 

 Accuracy Sensitivity Precision Specificity F1-measure 

Adaptive 

Thresholding 
66.42 61.32 98.37 97.60 74.09 

Canny Edge-

Based 
60.35 58.37 93.70 85.53 69.41 

Chan-Vese 64.92 77.88 85.19 62.73 76.22 

Fuzzy C-Means 

(FCM) 
90.33 93.34 93.93 86.24 93.22 

Proposed 

Method 
92.19 93.38 96.41 94.25 94.40 
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comparatively to the proposed method and FCM. Though FCM performed well in segmenting 

the nucleus, there was still some noise in the background that was segmented as an object of 

interest, which explains why most of the FCM's average score was slightly lower than the 

proposed method. Noise may reduce the performance of Canny edge-based and adaptive 

thresholding. In contrast, low contrast in the original image may make it difficult for the FCM 

method to segment the object accurately. To overcome the noise and contrast issues, the 

proposed method incorporates pre-processing. 

CONCLUSION 

This study examined a variety of automated nucleus segmentation methods. There are three 

primary stages: image acquisition, pre-processing and post-processing. The proposed methods 

were evaluated alongside four other traditional segmentation methods. This study used the 

median filter and PAGCHE in pre-processing to remove noise and improve colour contrast. To 

maintain colour, the original red, green, and blue (RGB) images were transformed into the HSV 

colour space, and the V channel is isolated for enhancement before being converted back to 

RGB and grayscale for post-processing. The proposed pre-processing method combines 

multilayer FCM, region properties filtering and mathematical morphology segmentation. Each 

layer has different fine-tuned parameter values. When selecting the best segmentation method, 

it must be able to differentiate between the nucleus and the cytoplasm and be noise-resistant. 

Next, a good method must be capable of segmenting images with low contrast distribution. In 

quantitative analysis, the accuracy, sensitivity, specificity, precision, and F1 score must be high 

and consistent throughout to ensure the method's robustness. Despite debris and a low-contrast 

image, the proposed method produces the best visual and quantitative segmentation results. 

The average score of the 917 images segmented by the proposed method is greater than 90%, 

demonstrating the proposed method's flexibility. 

Nevertheless, the proposed work does have certain limitations. The methods employed may 

not be universally applicable to all image types or noise levels, which could affect their 

effectiveness in various contexts. Additionally, the relatively small dataset size constrains the 

robustness of the findings. Using a larger dataset would provide a clearer understanding of how 

well the proposed method performs across different conditions. Future research should explore 
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more advanced techniques and a wider range of datasets to improve the robustness and 

generalizability of the proposed methods. 
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