DOI Link: https://doi.org/10.61586/VxNkY Vol.43, Issue.4, Part.1, April 2025, PP. 61-82

Molecular phylogenetic identification of *Cyrtomium*adenotrichum based on rbcL and psbA-trnH barcoding

Jiawen Wu¹, Kedao Lai², Yunfeng Huang², Qimin Hu², Ziyi Zhao^{2*}

1 College of Horticulture and Landscape Architecture, Northeast Agricultural
University, Harbin 150000, China.

2 Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530022, China.

Corresponding author: z526196822@163.com

Received Feb 2025 Accepted March 2025 Published April 2025

Abstract

Traditionally, new plant species identification relied primarily on morphological characteristics. However, molecular methods have now been demonstrated to provide more reliable identification. *Cyrtomium adenotrichum*, a fern species discovered in the Nandan limestone area of Guangxi, China, was initially described as a new species based on its distinct taxonomic morphology. To investigate the phylogenetic position of this newly described species, we conducted molecular phylogenetic analyses using the *rbcL* and *psbA-trnH* gene regions. Our study aimed to evaluate the effectiveness of these DNA barcodes in

distinguishing *C. adenotrichum* from closely related species. Maximum likelihood phylogenetic reconstruction revealed that both barcode regions clearly differentiated *C. adenotrichum* from its congeners, with significant topological divergence observed in the resulting trees. These findings demonstrate that *rbcL* and *psbA-trnH* serve as highly effective molecular markers for the accurate identification of *C. adenotrichum*.

Key words: Cyrtomium; *Cyrtomium adenotrichum*; *rbcl*; *psbA-trnH*; DNA barcoding

Introduction

Cyrtomium Presl is a genus in the Dryopteris family, characterized by oddpinnate leaves or leaf blades with pinnately lobed tips, reticulate venation, forming
fairly large reticulate pores with veinlets, and having rounded cyst clusters and
peltate endocysts. Since the genus was established in 1836, great attention has been
paid to the division of species and parts within the genus (Motoji TAGAWA et al.
1934; Choi et al. 2022). There are about 50 species of Cyperus in the woeld,
distributed in temperate regions of Asia, of which about 40 species were found in
China (Lu et al. 2003). The rhizome of the same genus *C. fortumei* was once used
as an anthelmintic and is now included in the Chinese Pharmacopoeia (2005 edition)
as a legal drug (Yang et al. 2013). Pharmacological studies have shown that

imidacloprid in its rhizomes inhibits the growth of tumor cells by inducing tumor apoptosis (Yang et al. 2013), and the methanol extract of its roots can inhibit tyrosinase activity and melanin production in melan-α cells, inhibit melanin production (Choi et al. 2013). In addition, the ethanol extract of *C. macrophyllum* has an immunopotentiating effect on cyclophosphamide-induced immunosuppression in BALB/c mice (Ren et al. 2014; Ullah et al. 2022). Therefore, plants of the genus Cyrtomium have important medicinal value.

The DNA barcode is a short, standardized region of DNA that is often used to identify a specific species (Hebert et al. 2003; Coissac et al.2016). The application of different DNA barcoding technologies has greatly helped modern plant classification (Hebert et al. 2003; Kress et al. 2005; Hollingsworth et al. 2011; Hu et al. 2020) by revealing phylogenetic relationships between taxa and facilitating taxonomic decisions. This is particularly important for so-called "cryptic species", i.e. species with low morphological differences but high genetic differences (Struck et al. 2018; Bryan et al. 2013; Heylen OCG et al. 2021; Beatriz et al. 2015). There are many coding and non-coding genes in the nuclear and plastid genomes, which are considered to be potential barcodes of plants (Mark et al. 2007; Lahaye et al. 2008; Hollingsworth et al. 2009; Rattray et al. 2024). The *rbcL* gene encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in chloroplasts, and its coding sequence is highly conserved (Blaxter et al. 2003;

Chase et al. 2005; Newmaster et al. 2006; Worthy et al. 2022). It has been widely used to resolve the phylogenetic relationships of ferns at the family or genus level (Pryer et al. 2011; Li et al. 2006; Geiger et al. 2005). In addition, the *psbA-trnH* gene is located between the *psbA* gene encoding the D1 protein of the photosynthetic system II reaction center and the *trnH* gene encoding tRNA histidine, and is one of the fastest evolving chloroplast spacers (Shaw et al. 2005a; Sang et al. 1997; Shaw et al. 2005b; Wang et al. 2023). Due to its high amplification efficiency in plants and its ability to well reflect the specificity of genes among populations (Shaw et al. 2005b), the Consortium Barcode of Life (CBOL) Plant Working Group recommends that *rbcL* and *psbA-trnH* sequences be used as one of the core barcodes for plant species identification (Wang et al. 2009).

In March 2024, our research team discovered a unique population of Cyrtomium during a field survey in the limestone of Nandan County, Guangxi. After field investigation and literature search, the species was found to be a new species and named *C. denotrichum* Y. Nong & R.H. Jiang, *sp. Nov.* (腺毛贯众) (Nong et al. 2024). Here, we provide a detailed molecular phylogenetic analysis of the new species *C. adenotrichum* and its species within the genus based on *rbcL* and *psbA-trnH* barcoding to clarify the group division of the species.

Materials and methods

Sample collection

Recently, in order to explore the phylogeny of *C. adenotrichum*, we obtained the specimen deposited in GXMI, specimen number Y Nong NY2024031701. The specimen was collected in China. Guangxi: Nandan, 24°48'47"N, 107°27'12"E, alt. 470 m, on the cliff at a gully; 17 March 2024.

DNA extraction, PCR amplification and sequencing

The genomic DNA of all the samples extraction method and kit were referred to Zhao et al (2024). PCRs were performed in a volume of 30 μL, which consisted of 50 ng of template DNA (1 μL), 15 μL of 2×Taq PCR master mix (Vazyme, Nanjing, China), 2 μL of 10 μmol/L forward and reverse primers, and 11 μL of ddH₂O. The primers and programs were shown in Table 1. All the PCR products were detected via agarose gel electrophoresis, and the gel was photographed via a UV transilluminator. The product was purified via a Fast Pure Gel DNA Extraction Mini Kit (Vazyme, Nanjing, China), and the reaction mixture was sequenced on an ABI 3130xl automatic sequencer (Applied Biosystems, Foster City, California, USA). The detection, purification and sequencing methods of the PCR products were also referred to Zhao et al (2024).

Table. 1 PCR amplification primers and procedures.

Barcode	Primer	Base sequence (5'→3')	Amplification program
sequence	name	Dase sequence (3 2)	Ampirication program
rbcL	F	ATGTCACCACAAACA	
		GAGACTAAAGC	94 °C 5 min; 95 °C 30 s, 54.5 °C
	R	GCTAAATCAAGTCCA	30 s, 72 °C 45 s (35 cycles); 72 °C
		99199	10 min
		CCACG	
psbA-trnH	psbA-F	GTTATGCATGAACGTA	94 °C 5 min; 94 °C 1 min, 55 °C 1
	•	ATGCTC	min 72 °C 1.5 min (20 avalos);
	trnH-R	CGCGCATGGTGGATTC	min, 72 °C 1.5 min (30 cycles);
		ACAATCC	72 °C 7 min

Sequence assembly and phylogenetic analysis

The sequencing peak diagram was spliced and calibrated via Codon Code Aligner 8.0.2 software. The primers and low-quality regions of the sequenced *rbcL* and *psbA-trnH* sequences were removed and cut according to the annotation file to obtain the complete sequences (Zhao et al. 2024).

One hundred and ten (110) *rbcL* sequences from 25 species of the same genus were downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank/, accessed on 15 December 2024) and analysed together (Table S1). Seventy (70) *psbA-trnH* sequences from 8 species of the same genus were downloaded from

GenBank (https://www.ncbi.nlm.nih.gov/genbank/, accessed on 15 December 2024) and analysed together (Table S2). All sequenced (*rbcLs*, *psbA-trnHs*) and reference sequences from Genbank were used to construct the phylogenetic tree. MAFFT (v7.505) was used for sequence alignment (Nakamura et al. 2018). ModelTest-NG (v0.1.7) was used for model validation of the phylogenetic tree (Darriba et al. 2020). According to the corrected Akaike information criterion (AICc), TIM2ef+I+G4 was selected for the *rbcL* barcode and TPM1uf was selected for the *psbA-trnH* barcode. The phylogenetic tree was constructed using RAxML-NG (v.1.1.0) (Kozlov et al. 2019). The support rate of each branch was checked using the bootstrap method (repeated 1000 times). The R package ggtree was used for visualization (Yu et al. 2017, Zhao et al. 2024).

Results

Sequences characterization

We compared the *rbcL* sequences of 112 samples by BLAST, and their identity was 100 %. A total of 110 sequences of the same genus species in GenBank were analyzed. *C. adenotrichum* had the shortest average sequence (479.50 bp), and *C. anomophyllum* had the lowest average GC content (46.69 %). 15 species had the longest average sequence (1154 bp), and *C. balansae* and *C. uniseriale* had the highest GC content (48.53 %) (Table S1). Afterwards, the *psbA-trnH* sequences of the 72 samples were compared by BLAST, and their identity was 100 %. A total of

70 sequences of the same genus species in GenBank were analyzed. *C. fortunei* had the shortest average sequence (342.43 bp), and *C. devexiscapulae* had the lowest average GC content (36.89 %) (Table S2). These results indicate that the rbcL and psbA-trnH sequences of C. adenotrichum differ from those of other species within the same genus.

Phylogenetic analysis

Phylogenetic analysis was performed based on the *rbcL* sequence level according to the ML method to better distinguish species. Distinct topological differences were observed in the rbcL sequences between *C. adenotrichum* and 25 congeneric species, demonstrating that this sequence can be used for identifying *C. adenotrichum* (Fig. 1). Using the same analysis method, there were also obvious topological differences between *C. adenotrichum* and 7 species of the same genus based on the *psbA-trnH* sequence level (Fig. 2), indicating that *psbA-trnH* can also distinguish and identify *C. adenotrichum* and its species within the genus Cyrtomium. Furthermore, in the phylogenetic trees constructed using *rbcL* and *psbA-trnH*, *C. adenotrichum* and *C. nephrolepioides* exhibited a closer genetic relationship, suggesting their sister-group affiliation within the genus *Cyrtomium*.

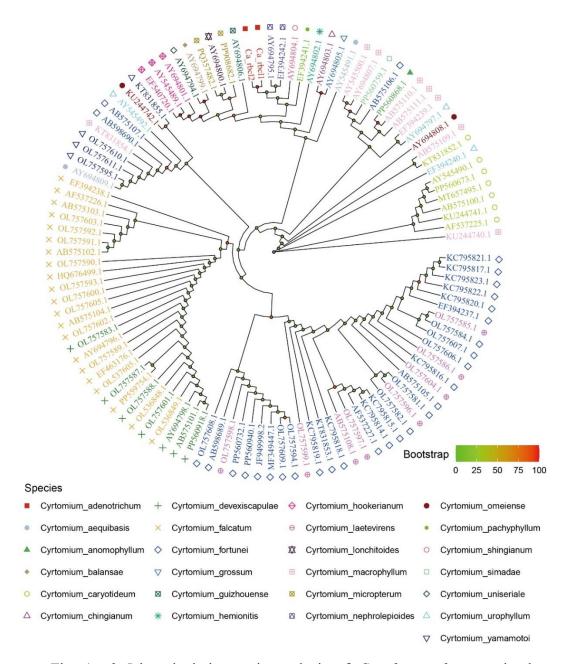


Fig. 1. *rbcL*-based phylogenetic analysis of *C. adenotrichums* and other congeners. The source species of different sequences are marked with different colours and shapes, and the colour of the circles at the nodes changing from green to red represent an increase in bootstrap value.

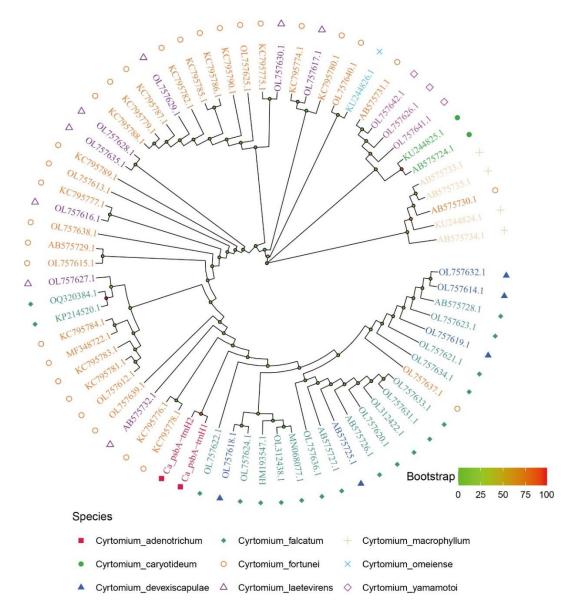


Fig. 2. *psbA-trnH* based phylogenetic analysis of *C. adenotrichums* and other congeners. The source species of different sequences are marked with different colours and shapes, and the colour of the circles at the nodes changing from green to red represent an increase in bootstrap value.

Discussion

Traditional classical taxonomy has gone through several centuries and has made important contributions to the systematic classification of the plant kingdom. The widespread application of scanning electron microscopes in plant taxonomy in the 1980s has enabled plant taxonomy to develop to a submicroscopic stage. With the development of science, the use of DNA genetic molecular level in plant taxonomy to identify species has been widely used, allowing plant taxonomy to enter a new stage from morphological research to the molecular level of internal genetic material (Hebert et al. 2003). Therefore, this paper used *rbcL* and *psbA-trnH* barcoding technology to explore the status of the new species *C. adenotrichum* and its congeners in plant taxonomy and their genetic relationships.

The main advantage of *rbcL* barcode is that it is easy to amplify and sequence. It has been used in Porphyra and its new species *P. aestivalis* sp. nov. (Hasebe et al. 1994), Aporosa and its new species *A. tetragona* Tagane & V. S. Dang (Tagane et al. 2015), Hemiboea and its new species *H. guangdongensis* comb. & stat. nov. (Li et al. 2019), Pterocladiella and its two new species *P. phangiae* sp. nov. and *P. megasporangia* sp. nov. (Sohrabipour et al. 2013), etc. In this study, a phylogenetic tree was constructed based on the *rbcL* barcode. *C. adenotrichum* and 25 species of the same genus were clearly clustered and identified (Fig. 1). The same species could be clustered into one category and could form independent branches at the

species level and at the family level, with a high support rate, so as to better distinguish species. This result shows that the *rbcL* barcode has a strong ability to identify and classify *C. adenotrichum* and its species of the same genus.

The chloroplast gene *psbA-trnH* sequence is a chloroplast intergenic gene fragment with a high amplification success rate and a short target fragment length (Chase et al. 2005; Lv et al. 2020). It has been successfully used to identify the genus Sideritis and its new species *S. elica* Aneva, Zhelev & Bonchev (Aneva et al. 2022), the genus Salvia and its new species *S. fimbriaticalyx* Mart.Gord. & Fragoso, sp. nov. (Fragoso-Martínez et al. 2021), the genus Euphorbia and its new species *E. tetrangularis* Hurbath & Cordeiro (Hurbath et al. 2018), etc. In this study, although the same species could not be grouped into one category based on the *psbA-trnH* barcode, *C. adenotrichum* and its species in the same genus could be clearly separated. Comparing the results of different studies, it was found that different primer fragments were selected, showing different results. The screening and identification of primers are crucial. Comprehensive analysis shows that the *psbA-trnH* primers used in this study need to be further optimized and need to be screened in multiple genera and even families.

Conclusion

Both *rbcL* and *psbA-trnH* serve as effective DNA barcodes for accurate identification of *C. adenotrichum*, demonstrating high discriminative power at the

species level.

Acknowledgements

We are grateful to Lan Xiangchun for fieldwork assistance (Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning).

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding:

This work was supported by the Guangxi High Level Key Disciplines Construction Pilot Project in Traditional Chinese Medicine-Authentication of Chinese Medicinal Materials (No.27) and the Survey and Collection of Germplasm Resources of Woody & Herbaceous Plants in Guangxi, China (GXFS-2021-34).

Author contributions

Author Contributions: Conceptualization, Z.Z, J.W., and Y.H.; Data curation, Q.H.; Formal analysis, J.W.; Funding acquisition, Y.H.; Investigation, Y.H and K. L.; Methodology, Z.Z., J.W. and K.L.; Resources, Q.H. and K.L.; Software, J.W. and K. L.; Supervision, K.L. and Y.H.; Validation, J.W.; Visualization, J.W., Z.Z.; Writing–original draft, Z.Z. and K. L.; Writing–review & editing, Z.Z., J.W., and

Y.H. All authors have read and agreed to the published version of the manuscript.

Author ORCIDs

Jia-Wen Wu: https://orcid.org/0000-0001-9330-3569

Yun-Feng Huang: https://orcid.org/0000-0001-7147-3938

Qi-min Hu: https://orcid.org/0009-0003-0490-3557

Zi-Yi Zhao: https://orcid.org/0000-0003-2513-0728

Data availability

All of the data that support the findings of this study are available in the main text.

References

Aneva I, Zhelev P, Bonchev G (2022) *Sideritis elica*, a New Species of Lamiaceae from Bulgaria, Revealed by Morphology and Molecular Phylogeny. Plants (Basel)

11(21): 2900. https://doi.org/10.3390/plants11212900

Beatriz V, Mario FM, Pablo V, Llorenç S (2015) Unmasking cryptic species:

morphometric and phylogenetic analyses of the Ibero-North African Linaria

incarnata complex. Botanical journal of the Linnean Society 177(3): 395-417.

https://doi.org/10.1111/boj.12251

Blaxter M, Floyd R (2003) Molecular taxonomics for biodiversity surveys:

Already a reality. Trends in Ecology & Evolution 18(6): 268-269.

https://doi.org/10.1016/S0169-5347(03)00102-2

Bryan CC, Jordan DS (2013) The carnivorous plant described as Sarracenia alata contains two cryptic species. Biological Journal of the Linnean Society 109(4): 737-746. https://doi.org/10.1111/bij.12093

Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haider N, Savolainen V (2005) Land plants and DNA barcodes: short-term and long-term goals. Philosophical Transactions Of The Royal Society B-biological Sciences 360(1462): 1889-1895. https://doi.org/10.1098/rstb.2005.1720

Choi SY (2013) Inhibitory effects of *Cyrtomium fortunei* J. Smith root extract on melanogenesis. Pharmacognosy Magazine 9(35): 227-230. https://doi.org/227-230.10.4103/0973-1296

Choi TY, Son DC, Oh SH, Kim DK, Lee KH, Lee SR (2022) Species delimitation and molecular diagnosis of Cyrtomium yamomotoi (Dryopteridaceae). Plant Systematics and Evolution 308(3): 18. https://doi.org/10.1007/s00606-022-01811-5

Coissac E, Hollingsworth PM, Lavergne S, Taberlet P (2016) From barcodes to genomes: extending the concept of DNA barcoding. Molecular Ecology 25(7): 1423-1428. https://doi.org/10.1111/mec

Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T (2020)

ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein

Evolutionary Models. Molecular Biology and Evolution 37(1)291-294.

https://doi.org/10.1093/molbev/msz189

Fragoso-Martínez I, Martínez-Gordillo M, Salas S (2021) Salvia fimbriaticalyx, a new species of Salvia (Lamiaceae) from Oaxaca, Mexico. Phytotaxa 518(4): 241-250. https://doi.org/10.11646/phytotaxa.518.4.1

Geiger JM, Ranker TA (2004) Molecular phylogenetics and historical biogeography of Hawaiian Dryopteris (Dryopteridaceae). Molecular Phylogenetics and Evolution 34(2): 392-407.

https://doi.org/10.1016/j.ympev.2004.11.001

Hasebe M, Omori T, Nakazawa M, Sano T, Kato M, Iwatsuki K (1994) rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proceedings of the National Academy of Sciences of the United States of America 91(12): 5730-5734. https://doi.org/10.1073/pnas.91.12.5730

Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of The Royal Society B-biological Sciences. 270 (1512): 313-321. https://doi.org/vv10.1098/rspb.2002.2218

Heylen OCG, Debortoli N, Marescaux J, Olofsson JK (2021) A Revised

Phylogeny of the *Mentha spicata* Clade Reveals Cryptic Species. Plants (Basel) 10(4): 819. https://doi.org/10.3390/plants10040819

Hollingsworth ML, Andra Clark A, Forrest LL, Richardson J, Pennington RT, Long DG, Cowan R, Chase MW, Gaudeul M, Hollingsworth PM (2009) Selecting

barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Molecular Ecology Resources

9(2): 439-457. https://doi.org/10.1111/j.1755-0998.2008.02439.x

Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6(5): 19254.

https://doi.org/10.1371/journal.pone.0019254

https://doi.org/10.1111/jse.12642

Hu HH, Liu B, Liang YS, Ye JF, Saqib Saddam, Meng Z, Lu LM, Chen ZD (2020) An updated Chinese vascular plant tree of life: Phylogenetic diversity hotspots revisited. Journal of Systematics and Evolution 58(5): 663-672.

Hurbath F, Leal BSS, Silva da, Palma-Silva C, Cordeiro I (2018) A new species and molecular phylogeny of Brazilian succulent Euphorbia sect. Brasilienses.

https://doi.org/10.1080/14772000.2018.1473897

Systematics and Biodiversity 16: 658-667.

Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America. 102(23): 8369-8374.

https://doi.org/10.1073/pnas.0503123102

Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic

inference. Bioinformatics 35(21): 4453-4455.

https://doi.org/10.1093/bioinformatics/btz305

Lahaye R, Van DBM, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V (2008) DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America 105(8): 2923-2928.

https://doi.org/10.1073/pnas.0709936105

Li CX, Lu SG (2006) Phylogenetics of Chinese Dryopteris (Dryopteridaceae) based on the chloroplast *rps4-trnS* sequence data. Journal of Plant Research 119(6): 589-598. https://doi.org/10.1007/s10265-006-0003-x

Li XQ, Guo ZY, Li Y, Zhou P, Chen XH, Li ZY, Xiang XG (2020) *Hemiboea* guangdongensis comb. & stat. nov., a cryptic species segregated from *H. subcapitata* (Gesneriaceae) based on morphological and molecular data 37(12): 37. https://doi.org/10.1111/njb.02574

Lu JM, J., Cheng X (2003) Distributional Study of the Genus *Cyrtomium* C. Presl (Dryopteridaceae). Pteridology in the New Millennium 118(2): 129-135. https://doi.org/10.1007/978-94-017-2811-9 10

Lv YN, Yang CY, Shi LC, Zhang ZL, Xu AS, Zhang LX, Li XL, Li HT (2020) Identification of medicinal plants within the Apocynaceae family using *ITS2* and *psbA-trnH* barcodes. Chinese Journal of Natural Medicines 18(8):594-605.

https://doi.org/10.1016/S1875-5364(20)30071-6

Mark WC, Robyn SC, Peter MH, Cassio VDB, Santiago M, Gitte P, Ole S, Tina J,

Kenneth MC, Mark C, Niklas P, Terry AH, Ferozah C, Gerardo AS, James ER,

Michelle LH, Timothy GB, Laura K, Mike W (2007) A proposal for a

standardised protocol to barcode all land plants. New Trends in Plant Systematics

56(2): 295-299. https://doi.org/10.1002/tax.562004

Motoji TAGAWA (1934) A Review of the Genus Cyrtomium of Japan. Acta

Phytotaxonomica et Geobotanica 3(2): 57-67.

https://doi.org/10.18942/bunruichiri.KJ00002594147

Nakamura T, Yamada KD, Tomii K, Katoh K (2018) Parallelization of MAFFT

for large-scale multiple sequence alignments. Bioinformatics. 34(14): 2490-2492.

https://doi.org/10.1093/bioinformatics/bty121

Newmaster SG, Fazekas AJ, Ragupathy S (2006) DNA barcoding in land plants:

evaluation of rbcL in a multigene tiered approach. Canadian Journal of Botany

84(3): 335-341. https://doi.org/10.1139/B06-047

Nong Y, Lei LQ, Zhao ZY, Wei GY, Xu CG, Feng B, Qu XC, Jiang RH (2024)

Cyrtomium adenotrichum (Dryopteridaceae), a new species from Guangxi, China.

PhytoKeys 243: 199-207. https://doi.org/10.3897/phytokeys.243.127579.

Pryer KM, Smith AR, Hunt JS, Dubuisson JY (2001) rbcL data reveal two

monophyletic groups of filmy ferns (Filicopsida: Hymenophyllaceae). The

American Journal of Botany 88(6): 1118-1130. https://doi.org/10.2307/2657095

Ren Z, He C, Fan Y, Guo L, Si H, Wang Y, Shi Z, Zhang H (2014) Immunoenhancement effects of ethanol extract from *Cyrtomium macrophyllum* (Makino)

Tagawa on cyclophosphamide-induced immunosuppression in BALB/c mice.

Journal of Ethnopharmacology 155(1): 769-775.

https://doi.org/10.1016/j.jep.2014.06.021

Rattray RD, Stewart RD, Niemann HJ, Olaniyan OD, van der BankM (2024)
Leafing through genetic barcodes: An assessment of 14 years of plant DNA
barcoding in South Africa. South African Journal of Botany 172: 474-487.
https://doi.org/10.1007/s00606-022-01811-5

Sang T, Crawford D, Stuessy T (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). The American Journal of Botany 84(8): 1120. https://doi.org/10.2307/2446155

Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005a) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. The American Journal of Botany 92(1): 142-166. https://doi.org/10.3732/ajb.92.1.142 Shaw J, Small RL (2005b) Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Prunus section Prunocerasus, Rosaceae). The American Journal of Botany 92(12): 2011-2030.

https://doi.org/10.3732/ajb.92.12.2011

Struck TH, Feder JL, Bendiksby M, Birkeland S, Cerca J, Gusarov VI, Kistenich S, Larsson KH, Liow LH, Nowak MD, Stedje B, Bachmann L, Dimitrov D (2018) Finding Evolutionary Processes Hidden in Cryptic Species. Trends in Ecology & Evolution 33(3): 153-163. https://doi.org/10.1016/j.tree.2017.11.007

Sohrabipour J, Lim P, Maggs C, Phang S (2013) Two new species and two new records of Pterocladiella (Gelidiales) from Malaysia based on analyses of rbcL and coxI gene sequences. Phycologia 12(123): 1-5. https://doi.org/10.2216/12-123.1

Tagane S, Dang VS, Toyama H, Naiki A, Hidetoshi Nagamasu, Yahara T, Tran H. (2015) *Aporosa tetragona* Tagane & V. S. Dang (Phyllanthaceae), a new species from Mt. Hon Ba, Vietnam. PhytoKeys (57): 51-60.

https://doi.org/10.3897/phytokeys.57.6347

Ullah F, Gao YD, Sari İ, Jiao RF, Saqib S, Gao XF (2020) Macro-Morphological and Ecological Variation in Rosa sericea Complex. Agronomy 12(5): 1078.

https://doi.org/10.3390/agronomy12051078

Yang S, Liu M, Liang N, Zhao Q, Zhang Y, Xue W, Yang S (2013) Discovery and antitumor activities of constituents from *Cyrtomium fortumei* (J.) Smith rhizomes. Chemistry Central Journal 7(1): 24. https://doi.org/10.1186/1752-153X-7-24

Yu GC, Smith DK, Zhu HC, Guan Y, Lam T (2017) visualization and annotation

of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8(1): 28-36. https://doi.org/10.1111/2041-210X.12628 Wang Y, Xu CB, Tong LG, Zhang XM, Wang MJ (2023) Genetic evaluation and germplasm identification analysis on ITS2, trnL-F, and psbA-trnH of alfalfa varieties germplasm resources. Open life sciences 18(1): 20220582.

https://doi.org/10.1515/biol-2022-0582

Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10(1): 57-63.

https://doi.org/10.1038/nrg2484

Worthy SJ, Bucalo K, Perry E, Reynolds A, Cruse-Sanders J, Pérez ÁJ, Burgess KS (2022) Ability of rbcL and matK DNA barcodes to discriminate between montane forest orchids. Plant Systematics and Evolution 308(3): 19.

https://doi.org/10.1007/s00606-022-01809-z

Zhao ZY, Wu JW, Xu CG, Nong Y, Huang YF, Lai KD (2024). Molecular identification and studies on genetic diversity and structure-related GC heterogeneity of *Spatholobus Suberectus* based on ITS2. Scientific Reports 14(1): 23523. https://doi.org/10.1038/s41598-024-75763-wX